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Abstract

We present a unifying framework for information theoretafure selection, bringing almost two
decades of research on heuristic filter criteria under desithgeoretical interpretation. This is in
response to the questiofwhat are the implicit statistical assumptions of featusdection criteria
based on mutual information?"To answer this, we adopt a different strategy than is usutde
feature selection literature—instead of tryingdefinea criterion, wederiveone, directly from a
clearly specified objective function: the conditional likeod of the training labels. While many
hand-designed heuristic criteria try to optimize a defimtf feature ‘relevancy’ and ‘redundancy’,
our approach leads to a probabilistic framework which redlyiincorporates these concepts. As
a result we can unify the numerous criteria published overldist two decades, and show them
to be low-order approximations to the exact (but intracpblptimisation problem. The primary
contribution is to show thatommon heuristics for information based feature seledfiociuding
Markov Blanket algorithms as a special case) are approxénitdrative maximisers of the con-
ditional likelihood. A large empirical study provides strong evidence to favantain classes of
criteria, in particular those that balance the relative sizthe relevancy/redundancy terms. Overall
we conclude that the JMI criterion (Yang and Moody, 1999; Bfest al., 2008) provides the best
tradeoff in terms of accuracy, stability, and flexibilitytvismall data samples.

Keywords: feature selection, mutual information, conditional likelod

1. Introduction

High dimensional data sets are a significant challenge for Machine Legar@iome of the most
practically relevant and high-impact applications, suclyeise expressiodata, may easily have
more than 10,000 features. Many of these features may be compieddywant to the task at
hand, orredundantin the context of others. Learning in this situation raises important issues, fo
example, over-fitting to irrelevant aspects of the data, and the computabmiEn of processing
many similar features that provide redundant information. It is thereforiengortant research
direction to automatically identify meaningful smaller subsets of these variahlatsis, feature
selection

Feature selection techniques can be broadly grouped into approaatestblassifier-dependent
(‘wrapper’ and ‘embedded’ methods), and classifier-independétar( methods). Wrapper meth-
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ods search the space of feature subsets, using the training/validatisa@cof a particular classi-
fier as the measure of utility for a candidate subset. This may deliver signiidaantages in gen-
eralisation, though has the disadvantage of a considerable computakipeate, and may produce
subsets that are overly specific to the classifier used. As a result, angecin the learning model is
likely to render the feature set suboptimal. Embedded methods (Guyon €G#8,, Chapter 3) ex-
ploit the structure of specific classes of learning modetgiidethe feature selection process. While
the defining component of a wrapper method is simply the search procebleir@efining compo-
nent of an embedded method is a criterion derived through fundamemalddge of a specific
class of functions. An example is the method introduced by Weston et all \X#ecting features
to minimize a generalisation bound that holds for Support Vector MachineeseTmethods are
less computationally expensive, and less prone to overfitting than weafeistill use quite strict
model structure assumptions. In contrdster methods (Duch, 2006) separate the classification
and feature selection components, and define a hewsgiring criterionto act as a proxy measure
of the classification accuracy. Filters evaluate statistics of theiddépendentlyf any particular
classifier, thereby extracting features that are generic, having ioi@igal few assumptions.

Each of these three approaches has its advantages and disadyah&agesary distinguish-
ing factors being speed of computation, and the chance of overfittingnergl, in terms of speed,
filters are faster than embedded methods which are in turn faster thanessappterms of overfit-
ting, wrappers have higher learning capacity so are more likely to oveafitembedded methods,
which in turn are more likely to overfit than filter methods. All of this of courbargyes with ex-
tremes of data/feature availability—for example, embedded methods will likelyedatm filter
methods in generalisation error as the number of datapoints increasesraomebrs become more
computationally unfeasible as the number of features increases. A primheamtage of filters is
that they are relatively cheap in terms of computational expense, aneémeealy more amenable
to a theoretical analysis of their design. Such theoretical analysis is the ébthis article.

The defining component of a filter method is theevance indexalso known as aelec-
tion/scoring criterior), quantifying the ‘utility’ of including a particular feature in the set. Nu-
merous hand-designed heuristics have been suggested (Duch, ab@élempting to maximise
feature ‘relevancy’ and minimise ‘redundancy’. However, few of ¢hase motivated from a solid
theoretical foundation. It is preferable to start from a more principledpgeetive—the desired
approach is outlined eloquently by Guyon:

“It is important to start with a clean mathematical statement of the probledrested
[...] It should be made clear how optimally the chosen approach addsebegoroblem
stated. Finally, the eventual approximations made by the algorithm to sohaptimai-

sation problem stated should be explained. An interesting topic of researchl be
to ‘retrofit’ successful heuristic algorithms in a theoretical frameworfGuyon et al.,
2006, pg. 21)

In this work we adopt this approach—instead of tryingidinefeature relevance indices, we
derivethem starting from a clearly specified objective function. The objectivehe®se is a well
accepted statistical principlthe conditional likelihood of the class labels given the featufesa
result we are able to provide deeper insight into the feature selectioleproénd achieve precisely
the goal above, to retrofit numerous hand-designed heuristics intor@ticabframework.
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2. Background

In this section we give a brief introduction to information theoretic concepliisyied by a summary
of how they have been used to tackle the feature selection problem.

2.1 Entropy and Mutual Information

The fundamental unit of information is tlemtropyof a random variable, discussed in several stan-
dard texts, most prominently (Cover and Thomas, 1991). The entropgtetiH (X), quantifies the
uncertainty present in the distribution Xf It is defined as,

H(X)=— 3 p(X)logp(x),
xeX

where the lower case denotes a possible value that the variaklean adopt from the alphabet
X. To computeé this, we need an estimate of the distributipfX). WhenX is discrete this can
be estimated by frequency counts from data, that(ig = %, the fraction of observations taking
on valuex from the totalN. We provide more discussion on this issue in Section 3.3. If the
distribution is highly biased toward one particular evert X, that is, little uncertainty over the
outcome, then the entropy is low. If all events are equally likely, that is, maxiomgertainty over
the outcome, thehl (X) is maximal? Following the standard rules of probability theory, entropy
can beconditionedon other events. Theonditional entropyof X givenY is denoted,

H(XY) == p(y) > p(xly)logp(x]y).

yey XeX

This can be thought of as the amount of uncertainty remainixgafter we learn the outcome Wt
We can now define th®lutual Information(Shannon, 1948) betweefiandY, that is, the amount
of informationsharedby X andY, as follows:

[(X;Y) = H(X)—=H(X]Y)

X
- x;cygy Pex)log P(X)p(Y)

This is the difference of two entropies—the uncertaib&fore Yis known,H (X), and the uncer-
tainty after Y is known,H(X|Y). This can also be interpreted as the amount of uncertaink in
which is removed by knowiny, thus following the intuitive meaning of mutual information as the
amount of information that one variable provides about another. ltidh®unoted that the Mutual
Information is symmetric, that i$(X;Y) = I (Y; X), and is zero if and only if the variables are sta-
tistically independent, that is(xy) = p(x)p(y). The relation between these quantities can be seen
in Figure 1. The Mutual Information can also be conditioned—etbreditional informatioris,

[(X;Y|Z) = H(X|Z)—-H(X|Y2Z)
— SP@ T Y pixyizlog— LY

€z XEX yey m

1. The base of the logarithm is arbitrary, but decides the ‘units’ of th@pytiWhen using base 2, the units are ‘bits’,
when using base, the units are ‘nats.’
2. In general, & H(X) <log(|X]).
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H(X) H(Y)

H(X,Y)

Figure 1: Illustration of various information theoretic quantities.

This can be thought of as the information still shared betweandY after the value of a third
variable,Z, is revealed. The conditional mutual information will emerge as a particularlgritapt
property in understanding the results of this work.

This section has briefly covered the principles of information theory; inahewing section
we discuss motivations for using it to solve the feature selection problem.

2.2 Filter Criteria Based on Mutual Information

Filter methods are defined by a criteridn also referred to as a ‘relevance index’ or ‘scoring’
criterion (Duch, 2006), which is intended to measure how potentially usefaature or feature
subset may be when used in a classifier. An intuitiveould be some measure of correlation
between the feature and the class label—the intuition being that a strongelaton between
these should imply a greater predictive ability when using the feature. Flasa labelY, the
mutual informatiorscore for a featur& is

Imim(Xe) = 1(X ). )

This heuristic, which considers a score for each feature independdmttizers, has been used
many times in the literature, for example, Lewis (1992). We refer to this feataeng criterion
as ‘MIM’, standing forMutual Information MaximisationTo use this measure we simply rank the
features in order of their MIM score, and select the kopeatures, wher& is decided by some
predefined need for a certain number of features or some other stappargon (Duch, 2006). A
commonly cited justification for this measure is that the mutual information can loetoserite
both an upper and lower bound on the Bayes error rate (Fano, 1@finah and Raviv, 1970). An
important limitation is that this assumes that each feature is independent ofalfedtures—and
effectively ranks the features in descending order of their individuatual information content.
However, where features may be interdependent, this is known to bgtsubb In general, it
is widely accepted that a useful and parsimonious set of features shatuthly be individually
relevant but also should not bedundantwvith respect to each other—features should not be highly
correlated. The reader is warned that while this statement seems appeadinglye, it is not
strictly correct as will be expanded upon in later sections. In spite of this, severaliaritave
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been proposed that attempt to pursue this ‘relevancy-redundaraly’Fmr example, Battiti (1994)
presents thdutual Information Feature SelectidMIFS) criterion:

Imits(X) = 1K Y) =B Y (X Xj),
j€S

whereSis the set of currently selected features. This included thgY) term to ensure feature
relevance but introduces a penalty to enforce low correlations with features gireelécted in
S Note that this assumes we are selecting featsegsientially iteratively constructing our final
feature subset. For a survey of other search methods than simple s&lgselection, the reader
is referred to Duch (2006); however it should be noted that all theatetsults presented in this
paper will be generally applicable to any search procedure, and lsatsyg on properties of the
criteria themselves. Thp in the MIFS criterion is a configurable parameter, which must be set
experimentally. Using3 = 0 would be equivalent tdmim(Xk), selecting features independently,
while a larger value will place more emphasis on reducing inter-featurendepeies. In experi-
ments, Battiti found thg = 1 is often optimal, though with no strong theory to explain why. The
MIFS criterion focuses on reducimgdundancyan alternative approach was proposed by Yang and
Moody (1999), and also later by Meyer et al. (2008) usingJbiat Mutual Information(JMI), to
focus on increasingomplementarynformation between features. The JMI score for feaXyes

Jimi(X) = ) HXXY).

j€S

This is the information between the targets arjdiat random variableXX;, defined by pair-
ing the candidat&y with each feature previously selected. The idea is if the candidate feature is
‘complementary’ with existing features, we should include it.

The MIFS and JMI schemes were the first of many criteria that attempted togeaha
relevance-redundancy tradeoff with various heuristic terms, howeigeclear they have very dif-
ferent motivations. The criteria identified in the literature 1992-2011 arellisielable 1. The
practice in this research problem has beehand-desigrtriteria, piecing criteria together as a jig-
saw of information theoretic terms—the overall aim to manage the relevaduadancy trade-off,
with each new criterion motivated from a different direction. Severaktijors arise here: Which
criterion should we believe? What do they assume about the data? Areotherauseful criteria,
as yet undiscovered? In the following section we offer a novel petispeeon this problem.

3. A Novel Approach

In the following sections we formulate the feature selection task as a condliti@iidwood problem.
We will demonstrate that precise links can be drawn between the well-adestatestical framework
of likelihood functions, and the current feature selection heuristics of ahutformation criteria.

3.1 A Conditional Likelihood Problem

We assume an underlying i.i.d. procgssX — Y, from which we have a sample bfobservations.
Each observation is a paix,y), consisting of al-dimensional feature vector= [xg,...,Xq]", and
a target clasy, drawn from the underlying random variablés= {Xy,..., X4} andY. Furthermore,
we assume thai(y|x) is defined by asubsebf thed features irx, while the remaining features are
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Criterion | Full name Authors
MIM Mutual Information Maximisation Lewis (1992)
MIFS Mutual Information Feature Selection Battiti (1994)
KS Koller-Sahami metric Koller and Sahami (1996)
JMI Joint Mutual Information Yang and Moody (1999)
MIFS-U | MIFS-‘Uniform’ Kwak and Choi (2002)
IF Informative Fragments Vidal-Naquet and Uliman (2003)
FCBF Fast Correlation Based Filter Yu and Liu (2004)
AMIFS Adaptive MIFS Tesmer and Estevez (2004)
CMIM Conditional Mutual Info Maximisation Fleuret (2004)
MRMR Max-Relevance Min-Redundancy Peng et al. (2005)
ICAP Interaction Capping Jakulin (2005)
CIFE Conditional Infomax Feature Extractign Lin and Tang (2006)
DISR Double Input Symmetrical Relevance Meyer and Bontempi (2006)
MINRED | Minimum Redundancy Duch (2006)
IGFS Interaction Gain Feature Selection El Akadi et al. (2008)
SOA Second Order Approximation Guo and Nixon (2009)
CMIFS Conditional MIFS Cheng et al. (2011)

Table 1: Various information-based criteria from the literature. Sectionsd34awill show how
these can all be interpreted in a single theoretical framework.

irrelevant. Our modeling task is therefore two-fold: firstly to identify the fesguhat play a func-
tional role, and secondly to use these features to perform predictionisisiwork we concentrate
on the first stage, that of selecting the relevant features.

We adopt al-dimensional binary vectd: a 1 indicating the feature is selected, a 0 indicating it
is discarded. Notatiorg indicates the vector of selected features, that is, the full vegoojected
onto the dimensions specified By Notationxg is the complement, that is, the unselected features.
The full feature vector can therefore be expressex-agxg,Xg}. As mentioned, we assume the
processp is defined by a subset of the features, so for some unknown optimak&ctee have
that p(y|x) = p(y|Xe-). We approximate using a hypothetical predictive modglwith two layers
of parametersf representing which features are selected, mnebresenting parameters used to
predicty. Our problem statement is to identify the minimal subset of features suchémawmize
the conditional likelihood of the training labels, with respect to these parameteor i.i.d. data
D = {(x',y");i = 1..N} the conditional likelihood of the labels given paramet@s} is

N . .
L(6,7D) = [ ay xe,T)-
[avbe
The (scaled) conditiondbg-likelihood is
0= 13 logayixh.) 2)
N 2, 9P o)

This is the error function we wish to optimize with respect to the paramétefy; the scaling
term has no effect on the optima, but simplifies exposition later. Using condlitigelihood has
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become popular in so-callediscriminativemodelling applications, where we are interested only
in the classification performance; for example Grossman and Domingod)(28@d it to learn
Bayesian Network classifiers. We will expand upon this link to discriminativeletsin Section
9.3. Maximising conditional likelihood corresponds to minimising KL-divergebetween the true
and predicted class posterior probabilities—for classification, we ofténrequire thecorrect
class, and not precise estimates of the posteriors, hence Equation (@)asyaower bound for
classification accuracy.

We now introduce the quantity(y|xg): this is the true distribution of the class labels given the
selected featuresy. It is important to note the distinction from(y|x), the true distribution given
all features. Multiplying and dividing by p(y|xe), we can re-write the above as,

yl| ea
og T %o log p(y'[xp) ©)
N Zl P(Y [Xp) Zl )
The second term in (3) can be similarly expanded, introducing the probat(liby):

yl| 97 yl| 9

N . .
- Nzl Y'|e Zl oy ) ilizllogp(WX')-

These are finite sample approximations, drawing datapoints i.i.d. with resptwt thstribution
p(xy). We useEyy{-} to denote statistical expectation, and for convenience we negate theg above
turning our maximisation problem into a minimisation. This gives us,

_ p(y|Xe) p(y|x)
! =~ Exy{ IOQW:T)} + Exy{ log 0yIXe) } — Exy{ log p(y]x)}. 4

These three terms have interesting properties which together define tinee fe@lection prob-
lem. It is particularly interesting to note that the second terpregiselythat introduced by Koller
and Sahami (1996) in their definitions of optimal feature selection. In theikwbe term was
adopted ad-hoc as a sensible objective to follow—here we have showiét #odirect and nat-
ural consequence of adopting the conditional likelihood as an objeativeibn. Remembering
X = {Xg,Xg}, this second term can be developed:

_ p(y[x)
Ms = Eo{log p(yIXe)}

y’ 0 e)
= (xy)
2 Plos =)

) (yIxexs) (o)
= 2 P0G ) Plxg o)

B _ POxgylxe)
= 2 Plog e plyixe)
= 106G Y[Xe). (5)

This is the conditional mutual information between the class label and the regnéaitures, given
the selected features. We can note also that the third term in (4) is anothenation theoretic
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quantity, the conditional entropy (Y|X). In summary, we see that our objective function can be
decomposed into three distinct terms, each with its own interpretation:

. _ P(y|Xe) g
lim —¢ = Exy{Iogm}+l(xe,Y|Xe)+H(Y|X). (6)

The first term is a likelihood ratio between the true and the predicted clasbudtigtns given
the selected features, averaged over the input space. The size ofrthisiledepend on how well
the modelky can approximat@, given the supplied featurésWhen® takes on the true valug (or
consists of a superset 6f) this becomes a KL-divergeng#|q. The second term is(Xg;Y|Xp),
the conditional mutual information between the class label and the unseleettedess, given the
selected features. The size of this term depends solely on the choickle and will decrease
as the selected feature 9¢f explains more abouY, until eventually becoming zero when the
remaining feature¥ contain no additional information aboMtin the context ofXg. It can be
noted that due to the chain rule, we have

L(XY) = 1(Xe;Y) +1(%: Y[ Xe),

hence minimizing (X;Y|Xs) is equivalent to maximising(Xe;Y). The final term isH (Y[X), the
conditional entropy of the labels givall features This term quantifies the uncertainty still remain-
ing in the label even when we knaa¥l possiblefeatures; it is an irreducible constant, independent
of all parameters, and in fact forms a bound on the Bayes error (E864).

These three terms make explicit the effect of the feature selection parafeteparating them
from the effect of the parametersn the model thatisesthose features. If we somehow had the
optimal feature subset, which perfectly captured the underlying procesthenl (Xg; Y|Xg) would
be zero. The remaining (reducible) error is then down to the KL divex®etig, expressing how
well the predictive modet) canmake usef the provided features. Of course, different modgls
will have different predictive ability: a good feature subset will notessarily be put to good use if
the model is too simple to express the underlying function. This perspedisalso considered by
Tsamardinos and Aliferis (2003), and earlier by Kohavi and John{}t9%he above results place
these in the context of a precise objective function, the conditional likedihBor the remainder of
the paper we will use the same assumption as that made implicit fijter selection methods.
For completeness, here we make the assumption explicit:

Definition 1 : Filter assumption

Given an objective function for a classifier, we can address the probleopdiofizing the feature set
and optimizing the classifier in two stages: first picking good features, thitdiry the classifier
to use them.

This implies that the second term in (6) can be optimized independently of thdrithis section
we have formulated the feature selection task as a conditional likelihooteprobn the following,

we consider how this problem statement relates to the existing literature, aodsiisow to solve
it in practice: including how to optimize the feature selection parameters, amstingation of the
necessary distributions.

3. In fact, if g is aconsistenestimator, this term will approach zero with lafye
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3.2 Optimizing the Feature Selection Parameters

Under the filter assumption in Definition 1, Equation (6) demonstrates that timeaopf the condi-
tional likelihood coincide with that of the conditional mutual information:

argmax.(0|D) = argminl (X5, Y[Xe). (7)
8 ]

There may of course be multiple global optima, in addition to the trivial minimum otseggall
features. With this in mind, we can introduce a minimality constraint on the size ¢éalbare set,
and define our problem:

0" = argmin{|8'| : &' = argminl (X5; Y|Xe)}. (8)
o 0

This is the smallest feature s¥§, such that the mutual informatidrqxé;Y]Xe) is minimal, and
thus the conditional likelihood is maximal. It should be remembered that the likelilsamnly our
proxy for classification error, and the minimal feature set in terms of cleatdn could be smaller
than that which optimises likelihood. In the following paragraphs, we conbigl® this problem is
implicitly tackled by methods already in the literature.

A common heuristic approach is a sequential search considering feanedsy-one for ad-
dition/removal; this is used for example in Markov Blanket learning algorithneh 15 IAMB
(Tsamardinos et al., 2003). We will now demonstrate that this sequentiahdeeuristic is in fact
equivalent to a greedy iterative optimisation of Equation (8). To undeatstamwe must time-index
the feature sets. Notatiofy /&I indicates the selected and unselected feature sets at tinkestep
with a slight abuse of notation treating these interchangeably as sets dodraariables.

Definition 2 : Forward Selection Step with Mutual Information
The forward selection step adds the feature with the maximum mutual informatioe @Gontext of
the currently selected setX The operations performed are:

X = argmax!(X;Y|Xe),
X E€Xqt

Xgir  —  Xet UX,
Ko < xﬁt\xk

A subtle (but important) implementation point for this selection heuristic is that itldhet add
another feature X, | (Xc;Y|Xg) = 0. This ensures we will not unnecessarily increase the size of
the feature set.

Theorem 3 The forward selection mutual information heuristic adds the feature thatrgtasethe
largest possible increase in the conditional likelihood—a greedy iterativeémisation.

Proof With the definitions above and the chain rule of mutual information, we have that:
I(X§I+1;Y|Xet+l) = |(X§1;Y|Xet) — 1 (X Y[ Xet).

The featureX, that maximises (Xg; Y |Xgt) is the same thaminimizes (Xg.1;Y |Xg:1); therefore
the forward step is a greedyinimizationof our objectivel (X5;Y|Xg), and therefore maximises the
conditional likelihood. [ |
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Definition 4 : Backward Elimination Step with Mutual Information

In a backward step, a feature is removed—the utility of a featyrés Xonsidered as its mutual
information with the target, conditioned on all other elements of the selecteslitbetut X,.. The
operations performed are:

X = argminl(XgY[{Xet\Xk})-
X Xgt

Xgrin Kot \ Xk
Xga — XgUX

Theorem 5 The backward elimination mutual information heuristic removes the featuredluses
the minimum possible decrease in the conditional likelihood.

Proof With these definitions and the chain rule of mutual information, we have that:

| (Keas Y [Xerra) = 1 (%3 Y [Xer) + 1 (X Y [ Xgue1).

The featureXy thatminimizes (X;Y|Xg1) is that which keep$(Xg.1;Y|Xg+1) as close as possi-
ble tol (XY |Xet); therefore the backward elimination step removes a feature while attempting to
maintain the likelihood as close as possible to its current value. |

To strictly achieve our optimization goal, a backward step shauly remove a feature if
(X Y[{Xet\X}) = 0. In practice, working with real data, there will likely be estimation errors
(see the following section) and thus very rarely the strict zero will berobge This brings us to an
interesting corollary regarding IAMB (Tsamardinos and Aliferis, 2003).

Corollary 6 Since the IAMB algorithm uses precisely these forward/backward seldeiaistics,
it is a greedy iterative maximisation of the conditional likelihood. In IAMB, eldveard elimination
step is only accepted ifXc; Y|{Xe:\X}) = 0, and otherwise the procedure terminates.

In Tsamardinos and Aliferis (2003) it is shown that IAMB returns the MarBlanket of any
target node in a Bayesian network, and that this set coincides with th@lstrefevant features in
the definitions from Kohavi and John (1997). The precise links to thisfitezare explored further
in Section 7. The IAMB family of algorithms adopt a common assumption, that ttzeisfaithful
to some unknown Bayesian Network. In the cases where this assumptia th@grocedure was
proven to identify the unique Markov Blanket. Since IAMB uses precisadyftinward/backward
steps we have derived, we can conclude thatMarkov Blanket coincides with the (unique) maxi-
mum of the conditional likelihood functioA more recent variation of the IAMB algorithm, called
MMMB (Min-Max Markov Blanket) uses a series of optimisations to mitigate thelregnent of
exponential amounts of data to estimate the relevant statistical quantities. dgigsisations do
not change the underlying behaviour of the algorithm, as it still maximises tiitamal likelihood
for the selected feature set, however they do slightly obscure the strortg link framework.
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3.3 Estimation of the Mutual Information Terms

In considering the forward/backward heuristics, we must take acadfuhe fact that we do not
have perfect knowledge of the mutual information. This is because we ihgicitly assumed
we have access to the true distributigagy), p(y|xe), etc. In practice we have to estimate these
from data. The problem calculating mutual information reduces to thahwbpy estimationand
is fundamental in statistics (Paninski, 2003). The mutual information is defingtie expected
logarithm of a ratio: o)

. PXy,

1(X;Y) Exy{ 00 oy }

We can estimate this, since the Strong Law of Large Numbers assures tisetBample estimate
using g convergesimost surelyto the expected value—for a datasetbifi.d. observationgx',y'),

1(X;Y) =~ [(X;Y) Nzll gAXI

In order to calculate this we need the estimated distributgrg),” p(x), andply). The computation
of entropies for continuous or ordinal data is highly non-trivial, andiireg an assumed model of
the underlying distributions—to simplify experiments throughout this article, seediscrete data,
and estimate distributions withistogram estimatorsising fixed-width bins. The probability of
any particular evenp(X = x) is estimated by maximum likelihood, the frequency of occurrence of
the eventX = x divided by the total number of events (i.e., datapoints). For more information o
alternative entropy estimation procedures, we refer the reader to Ria{2i083).

At this point we must note that the approximation above halaly if N is largerelative to
the dimension of the distributions over x and ior example ifx,y are binary,N ~ 100 should
be more than sufficient to get reliable estimates; howevegpyifare multinomial, this will likely
be insufficient. In the context of the sequential selection heuristics we timecussed, we are
approximatind (Xi;Y|Xg) as,

Xky’Xe)
Xk|Xe Y"Xe)

As the dimension of the variabl&y grows (i.e., as we add more features) then the necessary
probability distributions become more high dimensional, and hence our estimé#te afiutual
information becomes less reliable. This in turn causes increasingly pocemetgs for the in-
clusion/exclusion of features. For precisely this reason, the researamunity have developed
various low-dimensional approximations to (9). In the following sectionsyillenvestigate the
implicit statistical assumptions and empirical effects of these approximations.

In the remainder of this paper, we ug&;Y) to denote the ideal case of being able to compute
the mutual information, though in practice on real data we use the finite sanu'phamA(X;Y).

(9)

(XY Xe) ~ (X YIXe) = le

3.4 Summary

In these sections we have in effeeverse-engineeremimutual information-based selection scheme,
starting from a clearly defined conditional likelihood problem, and disclssgémation of the var-
ious quantities involved. In the following sections we will show that we carofietnumerous
existing relevancy-redundancy heuristics from the feature selectioatiiterinto this probabilistic
framework.
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4. Retrofitting Successful Heuristics

In the previous section, starting from a clearly defined conditional likeihmoblem, we derived
a greedy optimization process which assesses features based on a simiplg Griterion on the
utility of including a featureX, € X5. The score for a featung is,

Jemi(Xk) =1 (X Y[S), (10)

wherecmi stands for conditional mutual information, and for notational brevity we nsg5= Xg

for the currently selected set. An important question is, how does (1@ tel&xisting heuristics

in the literature, such as MIFS? We will see that MIFS, and certain otheriaritan be phrased
cleanly adinear combination®f Shannon entropy terms, while some are non-linear combinations,
involving maxor min operations.

4.1 Criteria as Linear Combinations of Shannon Information Terms

Repeating the MIFS criterion for clarity,

Imits(Xk) = 1K Y) =B ) (X Xj). (11)

j€S

We can see that we first need to rearrange (10) into the form of a siniglamey term betweeXy
andY, plus some additional terms, before we can compare it to MIFS. Using thitydii\; B|C) —
[(A;B) =1(A;C|B) — I (A;C), we can re-express (10) as,

Jemi(Xk) = (X Y[S) = 1(X:Y) = 1(X: S) +1 (X §Y). (12)

It is interesting to see terms in this expression corresponding to the corufepttevancy’ and
‘redundancy’, that is| (Xc;Y) andl(Xc;S). The score will be increased if the relevancyX@fis
large and the redundancy with existing features is small. This is in accadatica common view
in the feature selection literature, observing that we wish to avoid reduneeables. However,
we can also see an important additional téfiXc; S|Y), which is not traditionally accounted for in
the feature selection literature—we call this ttenditional redundancyThis term has the opposite
sign to the redundandyXy; S), hencel:y; will be increased when this is large, that is, a strong class-
conditional dependence & with the existing seS. Thus, we come to the important conclusion
thatthe inclusion of correlated features can be usegprbvided the correlatiomwithin classess
stronger than the overall correlation. We note that this is a similar obsentatittrat of Guyon
et al. (2006), that “correlation does not imply redundancy’—Equati®) éffectively embodies
this statement in information theoretic terms.

The sum of the last two terms in (12) represents the three-way interactioedethe existing
feature sef§ the targety, and the candidate featuk being considered for inclusion i To
further understand this, we can note the following property:

IXSY) =1SY) +1(XcY[S =1(SY) +1(XY) =1 (X S +1 (X FY).

We see that if (Xi; S) > | (X«; §Y), then the total utility when including, that isl (XS}Y), isless
than the sum of the individual relevancigS,Y) + 1 (X;Y). This can be interpreted a& having
unnecessary duplicated information. In the opposite case, WQIS) < | (X; SY), thenX, and
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S combine well and provide more informatioogetherthan by the sum of their parts(SY), and
[(X;Y).

The important point to take away from this expression is that the terms argradexoff—we
do not require a feature with low redundancy for its own sake, but idsezuire a feature that best
trades off the three terms so as to maximise the score overall. Much like thedbiasee dilemma,
attempting to decrease one term is likely to increase another.

The relation of (10) and (11) can be seen with assumptions on the undgediginibutionp(xy).
Writing the latter two terms of (12) as entropies:

Jcmi(xk) = | (xk;Y)
H(S) +H(SX)
+H(SY) —H(SXY). (13)

To develop this further, we require an assumption.
Assumption 1 For all unselected featuresoc X5, assume the following,

p = P(Xj
(Xo[%) ]EL (Xj %)

er(x,- XkY).
J€

This states that the selected featurgsare independent and class-conditionally independent given
the unselected featurg,Xinder consideration.

P(Xa|XxY)

Using this, Equation (13) becomes,

Jmi(X) = 1(XcY)
—H(S+ T HXj|X
(S J§e (X %)

FH(SY) = § H(X)XY).
gg j

where the prime od indicates we are making assumptions on the distribution. Now, if we introduce
YijesH(Xj) = YjesH (X)), andy jesH (Xj[Y) — 3 jesH (X]Y), we recover mutual information terms,
between the candidate feature and each member of ti& glets some additional terms,

J(/:mi(xk) = (Xk Y)
- zsl (X5 Xe) + st(XJ') —H(§
IE IE

+ S IXXY) = S HXY) +H(SY). (14)
gs(l 1Y) J;(M) (SY)

Several of the terms in (14) are constant with respegfte-as such, removing them will haveo
effect on the choice of featurRemoving these terms, we have an equivalent criterion,

i) = 1%6Y) = S 11X %) + Y HXj: X Y). (15)
(Xe) = 1% Y) gs 1 %) JZS j
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This has in fact already appeared in the literature as a filter criterion, alligjproposed by Lin
and Tang (2006), as Conditional Infomax Feature Extraction (CIFBlugh it has been repeatedly
rediscovered by other authors (El Akadi et al., 2008; Guo and Ni009). It is particularly
interesting as it represents a sort of ‘root’ criterion, from which savathers can be derived. For
example, the link to MIFS can be seen with one further assumption, that thedeare pairwise
class-conditionally independent.

Assumption 2 For all features i j, assume Xx;|y) = p(x|y)p(x;|y). This states that the features
are pairwise class-conditionally independent.

With this assumption, the terifi | (Xj; Xk|Y) will be zero, and (15) becomes (11), the MIFS
criterion, with = 1. The[3 parameter in MIFS can be interpreted as encoding a strength of belief
in another assumption, that of unconditional independence.

Assumption 3 For all features j j, assume (xxj) = p(x)p(X;). This states that the features are
pairwise independent.

A [ close to zero implies very strong belief in the independence statement, indittatrany
measured associatid(Xj; X) is in fact spurious, possibly due to noise in the datf Value closer
to 1 implies a lesser belief, that any measured dependéXgyXy) should be incorporated into the
feature score exactly as observed. Since MIM is produced by s@tin@, we can see that MIM
also adopts Assumption 3. The same line of reasoning can be applied to simdey criterion
proposed by Peng et al. (2005), tiéinimum-Redundancy Maximum-Relevaagterion,

T (%) = 1046 Y) — é 5 1066)
IE

Since mRMR omits the conditional redundancy term entirely, it is implicitly using Agdion 2.
The 3 coefficient has been set inversely proportional to the size of therduieature set. If we
have a large se&§, thenf will be extremely small. The interpretation is then that as th&ggows,
MRMR adopts a stronger belief in Assumption 3. In the original paper, (Bealg, 2005, Section
2.3) it was claimed that mRMR is equivalent to (10). In this section, throughimgakplicit the
intrinsic assumptions of the criterion, we have clearly illustrated that this claincasriect.

Balagani and Phoha (2010) present an analysis of the three criteriaBRNRIMFS and CIFE,
arriving at similar results to our own: that these criteria make highly resgi@ssumptions on
the underlying data distributions. Though the conclusions are similar, guoagh includes their
results as a special case, and makes explicit the link to a likelihood function.

The relation of the MIFS/mMRMR to Equation (15) is relatively straightforwdrtk more chal-
lenging to consider how closely other criteria might be re-expressed irnottmis fvang and Moody
(1999) propose usingpint Mutual Information(JMI),

Jjmi(X) = ZI (XX Y). (16)
IE
Using some relatively simple manipulations (see appendix) this can be re-vastten

Im%) =104) ~ g 5 [106) 1% 1Y)]- an
J€
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This criterion (17) returngxactlythe same set of features as the JMI criterion (16); however in
this form, we can see the relation to our proposed framework. The JMiiontdike mRMR, has a
stronger belief in the pairwise independence assumptions as the featbgg@es. Similarities can

of course be observed between JMI, MIFS and mRMR—the differeraiag the scaling factor and
the conditional term—and their subsequent relation to Equation (15). Itasipbssible to identify
numerous criteria from the literature that can all be re-written into a comman tmrresponding to
variations upon (15). Apaceof potential criteria can be imagined, where we parameterize criterion
(15) as so:

Tom =1 (X6 Y) =B 31X X0 +Y 3 104 %lY). (18)

Figure 2 shows how the criteria we have discussed so far can all be fisiee this unit square
corresponding t@/y parameters. MIFS sits on the left hand axis of the square—ytt0 and
B €10,1]. The MIM criterion, Equation (1), which simply assesses each featunedudlly without
any regard of others, sits at the bottom left, with 0, 3 = 0. The top right of the square corresponds
toy= 1, =1, which is the CIFE criterion (Lin and Tang, 2006), also suggested B\k&dli et al.
(2008) and Guo and Nixon (2009). A very similar criterion, using an agsion to approximate
the terms, was proposed by Cheng et al. (2011).

The JMI and mRMR criteria are unique in that tirapve linearlywithin the space as the feature
setSgrows. As the size of the s&increases they move closer towards the origin and the MIM
criterion. The particularly interesting point about this property is thatréhative magnitudeof
the relevancy term to the redundancy terms stays approximately constgtass, whereas with
MIFS, the redundancy term will in general [ times bigger than the relevancy term. The conse-
qguences of this will be explored in the experimental section of this papgrcAterion expressible
in the unit square has made independence Assumption 1. In addition,i@madhat sit at points
other thar3 = 1,y = 1 have adopted varying degrees of belief in Assumptions 2 and 3.

A further interesting point about this square is simply that it is sparselylptgzli An obvious
unexplored region is the bottom right, the corner correspondirf§)£00,y = 1; though there is
no clear intuitive justification for this point, for completeness in the experimeeiztion we will
evaluate it, as theonditional redundancyr ‘condred’ criterion. In previous work (Brown, 2009)
we explored this unit square, though derived from an expansion ehtieal information function
rather than directly from the conditional likelihood. While this resulted in antidahexpression
to (18), the probabilistic framework we present here is far more expessdlowing exact specifi-
cation of the underlying assumptions.

The unit square of Figure 2 descridasear criteria, named as so since they are linear combi-
nations of the relevance/redundancy terms. There exist other criterf@aliber a similar form, but
involving other operations, making themon-linear

4.2 Criteria as Non-Linear Combinations of Shannon Information Terms

Fleuret (2004) proposed ti&onditional Mutual Information Maximizatiocriterion,
Jemin(%) = fin [1 04 Y1)
This can be re-written,

Jomin( i) = 1 (X Y) = max| 1066 %) =1 046 X[ Y) (19)

X

41



BROWN, POCOCK, ZHAO AND LUJAN

mifs / mrmr [S]=2 cife/jmi 1S1=2
10O 0]

0.8

| ISI
mrmr 1SI=3 imi 1SI=3
OJ

041 mrmr1SI=4 jmi 1SI=4
O

0.2¢

mim
0.2 0.4 0.6 0.8 1

Y

o5
0

Figure 2: The full space dinear filter criteria, describing several examples from Table 1. Note
thatall criteria in this space adopt Assumption 1. Additionally, yled[3 axes represent
the criteria belief in Assumptions 2 and 3, respectively. The left hand axighére
the mRMR and MIFS algorithms sit. The bottom left corner, MIM, is the assumation
completely independent features, using just marginal mutual informaticte. tat some
criteria are equivalent at particular sizes of the current featurset

The proof is again available in the appendix. Due tottaxoperator, the probabilistic interpretation
is a little less straightforward. It is clear however that CMIM adopts Assumtjgince it evaluates
only pairwise feature statistics.

Vidal-Naquet and Ullman (2003) propose another criterion used in Comyisien, which we
refer to adnformative Fragments

Jit (%) = )Tér% [(XeXj5Y) = 1(X;5Y) |-
The authors motivate this criterion by noting that it measures the gain of corglanmiew feature
X with each existing featurk;, over simply usingX; by itself. TheX; with the least ‘gain’ from
being paired withX, is taken as the score fof. Interestingly, using the chain rul€XX;;Y) =
[(X;Y) + (X Y[Xj), therefore IF is equivalent to CMIM, that ids (Xk) = Jemim(Xk), making the
same assumptions. Jakulin (2005) proposed the criterion,

Jeap(X) = 104Y) = 5 max|0.{1 (X Xp) =1 04X 1¥)}

j€S

Again, this adopts Assumption 1, using the same redundancyanttitionalredundancy terms, yet
the exact probabilistic interpretation is unclear.

An interesting class of criteria use a normalisation term on the mutual informatiofistet
the inherent bias toward high arity features (Duch, 2006). An examptbi®fis Double Input
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Symmetrical Relevan¢®eyer and Bontempi, 2006), a modification of the JMI criterion:

B (XX Y)
Jdisr(xk) = >(JZ€5H(Xk>J(JY)

The inclusion of this normalisation term breaks the strong theoretical link to léntkosl function,
but again for completeness we will include this in our empirical investigationsilétthe criteria
in the unit square can have their probabilistic assumptions made explicit, thiaasoity in the
CMIM, ICAP and DISR criteria make such an interpretation far more difficult.

4.3 Summary of Theoretical Findings

In this section we have shown that numerous criteria published over thisvoedecades of research
can be ‘retro-fitted’ into the framework we have proposed—the criteeapproximations to (10),
each making different assumptions on the underlying distributions. Since préfrious section we
saw that accepting the top ranked feature according to (10) providesatkiemum possible increase
in the likelihood, we see now that the criteria approximatamaximisers of the likelihood. Whether
or not they indeed provide the maximum increase at each step will depdrmhowell the implicit
assumptions on the data can be trusted. Also, it should be rememberecethitvee used (10), it
is not guaranteed to find the global optimum of the likelihood, since (a) it isedyrsearch, and (b)
finite data will mean distributions cannot be accurately modelled. In this caskave reached the
limit of what a theoretical analysis can tell us about the criteria, and we nags the remaining
‘gaps’ in our understanding with an experimental study.

5. Experiments

In this section we empirically evaluate some of the criteria in the literature agaiestrmther. Note
that we are not pursuing an exhaustive analysis, attempting to identify theihg’ criterion that
provides best performance ovefalirather, we primarily observe how the theoretical properties
of criteria relate to the similarity of the returned feature sets. While these mpiespare interest-
ing, we of course must acknowledge that classification performance idtimate evaluation of a
criterion—hence we also include here classification results on UCI datargits Section 6 on the
well-known benchmark NIPS Feature Selection Challenge.

In the following sections, we ask the questions: “how stable is a criterion t shanges in
the training data set?”, “how similar are the criteria to each other?”, “how edlifferent criteria
behave in limited and extreme small-sample situations?”, and finally, “what islHi®rebetween
stability and accuracy?”.

To address these questions, we use the 15 data sets detailed in Tablsafhehosen to have
a wide variety of example-feature ratios, and a range of multi-class problEnesfeatures within
each data set have a variety of characteristics—some binary/discrétsoime continuous. Con-
tinuous features were discretized, using an equal-width strategy into Sadiile features already
with a categorical range were left untouched. The ‘ratio’ statistic quotdiaeriinal column is an
indicator of the difficulty of the feature selection for each data set. This teenumber of data-
points (N), the median arity of the features), and the number of classeg-the ratio quoted in

4. In any case, the No Free Lunch Theorem applies here also (Tdiaosand Aliferis, 2003).
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the table for each data set%, hence a smaller value indicates a more challenging feature selection
problem.

A key point of this work is to understand the statistical assumptions on the davaéahjpy the
feature selection criteria—if our classification model were to make even rsstargtions, this is
likely to obscure the experimental observations relating performance toetreab properties. For
this reason, in all experiments we use a simple nearest neighbour clasii@), this is chosen
as it makes few (if any) assumptions about the data, and we avoid the arggardmeter tuning.

For the feature selection search procedure, the filter criteria are apdieg a simple forward
selection, to select a fixed number of features, specified in each expérbeéore being used with
the classifier.

Data Features Examples ClasseRatio
breast 30 569 2 57
congress 16 435 2 72
heart 13 270 2 34
ionosphere 34 351 2 35
krvskp 36 3196 2 799
landsat 36 6435 6 214
lungcancer 56 32 3 4
parkinsons 22 195 2 20
semeion 256 1593 10 80
sonar 60 208 2 21
soybeansmall 35 47 4 6
spect 22 267 2 67
splice 60 3175 3 265
waveform 40 5000 3 333
wine 13 178 3 12

Table 2: Data sets used in experiments. The final column indicates the diffafultye data in
feature selection, a smaller value indicating a more challenging problem.

5.1 How Stable are the Criteria to Small Changes in the Data?

The set of features selected by any procedure will of course depetice data provided. It is a
plausible complaint if the set of returned features varies wildly with only shgiiations in the
supplied data. This is an issue reminiscent oftifas-variance dilemmawhere the sensitivity of a
classifier to its initial conditions causes high variance responses. Howenite the bias-variance
decomposition is well-defined and understood, the corresponding isstieature selection, the
‘stability’, has only recently been studied. The stability of a feature selediid@rion requires
a measure to quantify the ‘similarity’ between two selected feature sets. Thisirstadiscussed
by Kalousis et al. (2007), who investigated several measures, with thedamammendation being
the Tanimoto distance between sets. Such set-intersection measures peepniap, but have
limitations; for example, if two criteria selected identical feature sets of sizev&Onight be less
surprised if we knew the overall pool of features was of size 12, thawds size 12,000. To account
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for this, Kuncheva (2007) presentsansistency indexXased on the hypergeometric distribution
with a correction for chance.

Definition 7 The consistency for two subsetsBAC X, such thaiA| = |B| =k, and r= |ANB|,
where0 < k < |X| =n, is

The consistency takes values in the rafgé,+1], with a positive value indicating similar sets,
a zero value indicating a purely random relation, and a negative valueaiimdjca strong anti-
correlation between the features sets.

One problem with the consistency index is that it does not take festduvmdancynto account.
That is, two procedures could select features which have differeayt endices, so are identified as
‘different’, but in fact are so highly correlated that they are effedyivdentical. A method to deal
with this situation was proposed by Yu et al. (2008). This method construetsgited complete
bipartite graph, where the two node sets correspond to two differetuiréesets, and weights are
assigned to the arcs are the normalized mutual information between the $eattine nodes, also
sometimes referred to as the symmetrical uncertainty. The weight betweeninagt A, and node
jinsetB,is

| (Xagi)s Xa(j))

H (Xagi)) +H(Xg(j))

The Hungarian algorithm is then applied to identify the maximum weighted matchtagée the
two node sets, and the overall similarity between sets A and B is the final matayshdrhis is the
information consistencyf the two sets. For more details, we refer to Yu et al. (2008).

We now compare these two measures on the criteria from the previous seétwreach data
set, we take a bootstrap sample and select a set of features using &ach $election criterion.
The (information) stability of a single criterion is quantified as the averag&isa&r(information)
consistency across 50 bootstraps from the training data.

Figure 3 shows Kuncheva'’s stability measure on average over 15 dataalecting feature sets
of size 10; note that the criteria have been displayed ordered left-tblygtneir median value of
stability over the 15 data sets. The marginal mutual information, MIM, is asceegehe most
stable, given that it has the lowest dimensional distribution to approximagendkt most stable is
JMI which includes the relevancy/redundancy terms,dweragesover the current feature set; this
averaging process might therefore be interpreted empirically as a fosmobthing’, enabling the
criteria overall to be resistant to poor estimation of probability distributiorearitbe noted that the
far right of Figure 3 consists of the MIFS, ICAP and CIFE criteria, alivbiich do not attempt to
average the redundancy terms.

Figure 4 shows the same data sets, but insteathfbanation stabilityis computed; as men-
tioned, this should take into account the fact that some features are haghdyated. Interestingly,
the two box-plots show broadly similar results. MIM is the most stable, and GIEie least stable,
though here we see that JMI, DISR, and MRMR are actually more stabl&Kivarheva’s stability
index can reflect. An interesting line of future research might be to comb@bdst of these two
stability measures—one that can take into account both feature redynaiati@ correction for
random chance.

W(A(), B(j)) =
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Figure 3: Kuncheva’'s Stability Index across 15 data sets. The box teditiae upper/lower quar-
tiles, the horizontal line within each shows the median value, while the dotteshenss
indicate the maximum/minimum values. For convenience of interpretation, critettigeon
x-axis are ordered by their median value.
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Figure 4: Yu et al's Information Stability Index across 15 data sets. Fopaoison, criteria on the
x-axis are ordered identically to Figure 3. The general picture ememgédarty, though
the information stability index is able to take feature redundancy into accdww;irsg
that some criteria are slightly more stable than expected.
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(a) Kuncheva'’s Consistency Index. (b) Yu et al's Information Stability Index.

Figure 5: Relations between feature sets generated by different griter@average over 15 data
sets. 2-D visualisation generated by classical multi-dimensional scaling.

5.2 How Similar are the Criteria?

Two criteria can be directly compared with the same methodology: by measueratisistency
and information consistency between selected feature subsets on a coetwiufesa. \We calculate
the mean consistencies between two feature sets of size 10, repeatettytseler 50 bootstraps
from the original data. This is then arranged in a similarity matrix, and we ussicid multi-
dimensional scaling to visualise this as a 2-d map, shown in Figures 5a aNdtetagain that while
the indices may return different absolute values (one is a normalized meamygfergeometric
distribution and the other is a pairwise sum of mutual information terms) they showsimilar
relative ‘distances’ between criteria.

Both diagrams show a cluster of several criteria, and 4 clear outliersSMIFFE, ICAP and
CondRed. The 5 criteria clustering in the upper left of the space appestutn relatively similar
feature sets. The 4 outliers appear to return quite significantly diffeestife sets, both from
the clustered set, and from each other. A common characteristic of thegketsos that they do
not scale the redundancy or conditional redundancy information temthese criteria, the upper
bound on the redundancy terfn sl (X; X;) grows linearly with the number of selected features,
whilst the upper bound on the relevancy ter(X;Y) remains constant. When this happens the
relevancy term is overwhelmed by the redundancy term and thus the grigsfliects features with
minimal redundancy, rather than trading off between the two terms. Thisteat®ngly divergent
feature sets being selected, which is reflected in the stability of the criterigh &eahe outliers
are different from each other as they have different combinationsdafirdancy and conditional
redundancy. We will see this ‘balance’ between relevancy and reshagdemerge as a common
theme in the experiments over the next few sections.
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5.3 How do Criteria Behave in Limited and Extreme Small-sample Situation®

To assess how criteria behave in data poor situations, we vary the nufidzgapoints supplied to
perform the feature selection. The procedure was to randomly seleaatdpoints, then use the
remaining data as a hold-out set. From this 140, the number provided torgacion was increased

in steps of 10, from a minimal set of size 20. To allow a reasonable testingeegtve limited this
assessment to only data sets with at least 200 datapoints total; this givedats $&ts from the 15,
omitting lungcancer parkinsons soybeansmallandwine. For each data set we select 10 features
and apply the 3-nn classifier, recording the rank-order of the criteterins of their generalisation
error. This process was repeated and averaged over 50 trialgy gi@mesults in Figure 6.

To aid interpretation we label MIM with a simple point marker, MIFS, CIFE, d®Rad, and
ICAP with a circle, and the remaining criteria (DISR, JMI, mMRMR and CMIM) watlstar. The
criteria labelled with a star balance the relative magnitude of the relevanagedaddancy terms,
those with a circle do not attempt to balance them, and MIM contains no redeywterm. There
is a clear separation between those criteria with a star outperforming those eifthe, and MIM
varying in performance between the two groups as we allow more trainingalats.

Notice that the highest ranked criteria coincide with those in the cluster atpheftof Figures
5a and 5b. We suggest that the relative difference in performanceivodhe same reason noted
in Section 5.2, that the redundancy term grows with the size of the seleatedeaset. In this case,
the redundancy term eventually grows to outweigh the relevancy by a degee, and the new
features are selected solely on the basis of redundancy, ignoringeharnee, thus leading to poor
classification performance.

——mim
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condred

—&-—cife
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—A—mrmr

—=—jmi

~Fe—disr
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Rank

1 1 1 1 1 1 1
20 40 60 80 100 120 140
Training points

Figure 6: Average ranks of criteria in terms of test error, selecting 4ifes, across 11 data sets.
Note the clear dominance of criteria which do not allow the redundancy tewwee
whelm the relevancy term (unfilled markers) over those that allow redwayd® grow
with the size of the feature set (filled markers).
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Data Features Examples Classes
Colon 2000 62 2
Leukemia 7070 72 2
Lung 325 73 7
Lymph 4026 96 9
NCI9 9712 60 9

Table 3: Data sets from Peng et al. (2005), used in experiments.

5.4 Extreme Small-Sample Experiments

In the previous sections we discussed two theoretical properties ofriafam-based feature se-
lection criteria: whether it balances the relative magnitude of relevandapsigadundancy, and
whether it includes a class-conditional redundancy term. Empirically on @leddlta sets, we see
that the balancing is far more important than the inclusion of the conditionahdathcy term—for
example, MRMR succeeds in many cases, while MIFS performs poorly, Newonsider whether
same property may hold in extreme small-sample situations, when the numbemngflegas so
low that reliable estimation of distributions becomes extremely difficult. We usesdataed from
Peng et al. (2005), detailed in Table 3. Results are shown in Figure ¢tisgl&0 features from
each data set and plotting leave-one-out classification error. It shbatiirse be remembered that
on such small data sets, making just one additional datapoint error aahineseemingly large
changes in accuracy. For example, the difference between the loesbast criteria on Leukemia
was just 3 datapoints. In contrast to the UCI results, the picture is less @raColon, the criteria
all perform similarly; this is the least complex of all the data sets, having the shalienber of
classes with a (relatively) small number of features. As we move througtataesets with in-
creasing numbers of features/classes, we see that MIFS, CONDREP a@d ICAP start to break
away, performing poorly compared to the others. Again, we note that tleeret attempt to bal-
ance relevancy/redundancy. This difference is clearest on the 8HI#) the most complex with 9
classes and 9712 features. However, as we may expect with suchiimigisibnal and challenging
problems, there are some exceptions—the Colon data as mentioned, ane dlsadidata where
ICAP/MIFS perform well.

5.5 What is the Relation Between Stability and Accuracy?

An important question is whether we can find a good balance between tli@yst#la criterion
and the classification accuracy. This was considered by Gulgezer{Z2@9), who studied the sta-
bility/accuracy trade-off for the MRMR criterion. In the following, we cader this trade-off in the
context ofPareto-optimality across the 9 criteria, and the 15 data sets from Table 2. Experimental
protocol was to take 50 bootstraps from the data set, each time calculating-tbielmag error using
the 3-nn. The stability measure was Kuncheva’s stability index calculatedtfre 50 feature sets,
and the accuracy was the mean out-of-bag accuracy across thetSGdqum The experiments were
also repeated using the Information Stability measure, revealing almost ideaods. Results
using Kuncheva’s stability index are shown in Figure 8.

The Pareto-optimal sets defined as the set of criteria for which no other criterion has both
a higher accuracy and a higher stability, hence the members of the Pptebaloset are said to
be non-dominatedFonseca and Fleming, 1996). Thus, each of the subfigures of Riguréeria
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Figure 7: LOO results on Peng’s data sets : Colon, Lymphoma, Leukentg, NCI9.
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Figure 8: Stabilty (y-axes) versus Accuracy (x-axes) over 50 haqps for each of the UCI data

sets. The pareto-optimal rankings are summarised in Table 4.
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Accuracy/ Stability(Yu) | Accuracy/ Stability(Kuncheva) Accuracy
JMI (1.6) JMI (1.5) JMI (2.6)
DISR (23) DISR (22) MRMR (3.6)
MIM (2.4) MIM (2.3) DISR (37)
MRMR (2.5) MRMR (2.5) CMIM (4.5)
CMIM (3.3) CONDRED (32) ICAP (5.3)
ICAP (3.6) CMIM (3.4) MIM (5.4)
CONDRED (37) ICAP (4.3) CIFE (59)
CIFE (43) CIFE (48) MIFS (6.5)
MIFS (4.5) MIFS (4.9) CONDRED (74)

Table 4: Column 1:Non-dominated Rank of different criteria for the trade-off of accyfstability.
Criteria with a higher rank (closer taQ) provide a better tradeoff than those with a lower
rank. Column 2:As column 1 but using Kuncheva’s Stability IndeRolumn 3: Average
ranks for accuracy alone.

that appear further to the top-right of the spaceninatethose toward the bottom left—in such a
situation there is no reason to choose those at the bottom left, since thegnaireated on both
objectives by other criteria.

A summary (for both stability and information stability) is provided in the first twlugms of
Table 4, showing th@on-dominated rankf the different criteria. This is computed per data set
as the number of other criteria which dominate a given criterion, in the Paptitoral sense, then
averaged over the 15 data sets. We can see that these rankings aretsitthiéaresults earlier,
with MIFS, ICAP, CIFE and CondRed performing poorly. We note that,JMhich both balances
the relevancy and redundancy terms and includes the conditional =ty utperforms all other
criteria.

We present the average accuracy ranks across the 50 bootstrapsnmm@. These are similar
to the results from Figure 6 but use a bootstrap of the full data set, ratherattsmall sample
from it. Following Densar (2006) we analysed these ranks using a Friedman test to determine
which criteria are statistically significantly different from each other. We the=d a Nemenyi post-
hoc test to determine which criteria differed, with statistical significance®#t, 5%, and 99%
confidences. These give a partial ordering for the criteria which wsent in Figure 9, showing
a Significant Dominance Partial Ordatiagram. Note that this style of diagram encapsulates the
same information as a Critical Difference diagram (3em 2006), but allows us to display multiple
levels of statistical significance. A bold line connecting two criteria signifiadference at the 99%
confidence level, a dashed line at the 95% level, and a dotted line at the @1%Albsence of a link
signifies that we do not have the statistical power to determine the diffecerecevay or another.
Reading Figure 9, we see that with 99% confidence JMI is significantlyrisupge CondRed, and
MIFS, but not statistically significantly different from the other criteria.weslower our confidence
level, more differences appear, for example MRMR and MIFS are onfyfgigntly different at the
90% confidence level.
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99% Confidence
95% Confidence
90% Confidence

000000000

CONDRED

Figure 9: Significant dominance partial-order diagram. Criteria are plagetb bottom in the di-
agram by their rank taken from column 3 of Table 4. A link joining two criteria nsea
a statistically significant difference is observed with a Nemenyi post-hoatiése spec-
ified confidence level. For example JMI is significantly superior to MIBS=(1) at the
99% confidence level. Note that the absence of a link does not signifydkefa statis-
tically significant difference, but that the Nemenyi test does not haeisat power (in
terms of number of data sets) to determine the outcome §aerd006). It is interesting
to note that the four bottom ranked criteria correspond to the corner® afrih square
in Figure 2; while the top three (JMI/MRMR/DISR) are all very similar, scaling té-
dundancy terms by the size of the feature set. The middle ranks belong td/CDAP,
which are similar in that they use the min/max strategy instead of a linear combinftion o
terms.
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5.6 Summary of Empirical Findings

From experiments in this section, we conclude that the balance of relékathaydancy terms is
extremely important, while the inclusion of a class conditional term seems to mageMfesfind
that some criteria are inherently magtablethan others, and that the trade-off between accuracy
(using a simple k-nn classifier) and stability of the feature sets differs etweteria. The best
overall trade-off for accuracy/stability was found in the JMI and MRMRecia. In the following
section we re-assess these findings, in the context of two problems foostheg NIPS Feature
Selection Challenge.

6. Performance on the NIPS Feature Selection Challenge

In this section we investigate performance of the criteria on data sets takaritfe NIPS Feature
Selection Challenge (Guyon, 2003).

6.1 Experimental Protocols

We present results using GISETTE (a handwriting recognition task)Vi&ELON (an artificially
generated data set).

Data Features Examples (Tr/Val) Classes
GISETTE 5000 6000/1000 2
MADELON 500 2000/600 2

Table 5: Data sets from the NIPS challenge, used in experiments.

To apply the mutual information criteria, we estimate the necessary distributging his-
togram estimators: features were discretized independently into 10 edptal lpins, with bin
boundaries determined from training data. After the feature selectioegsdhe original (undis-
cretised) data sets were used to classify the validation data. Each criteafonsed to generate
a ranking for the top 200 features in each data set. We show results usiriiglitkop 200 for
GISETTE, but only the top 20 for MADELON as after this point all criteriaramstrated severe
overfitting. We use the Balanced Error Rate, for fair comparison withiguely published work on
the NIPS data sets. We accept that this does not necessarily sharethemama as the classifi-
cation error (to which the conditional likelihood relates), and leave invagiigaof this to future
work.

Validation data results are presented in Figure 10 (GISETTE) and FigUiADELON). The
minimum of the validation error was used to select the best performing fesgtisize, the training
data alone used to classify the testing data, and finally test labels were sutimittedchallenge
website. Test results are provided in Table 6 for GISETTE, and Talwe MADELON.®

Unlike in Section 5, the data sets we have used from the NIPS Feature Sel€btdienge
have a greater number of datapoints (GISETTE has 6000 training exami#i&ELON has 2000)
and thus we can present results using a direct implementation of Equatjoas(&Ccriterion. We
refer to this criterion as CMI, as it is using the conditional mutual informatiorctoesfeatures.
Unfortunately there are still estimation errors in this calculation when selectengea number of

5. We do not provide classification confidences as we used a neamglsbaur classifier and thus the AUC is equal to
1- BER.
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Figure 10: Validation Error curve using GISETTE.

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

200

0.5

0.45f

0.35f

0.3

0.25f

0.2

0.151

0.05r

1 1
0 2 4 6 8 10 12 14 16 18
Number of Features

Figure 11: Validation Error curve using MADELON.

55



BROWN, POCOCK, ZHAO AND LUJAN

features, even given the large number of datapoints and so the critaif®tofselect features after
a certain point, as each feature appears equally irrelevant. In GISEINIEselected 13 features,
and so the top 10 features were used and thus one result is shown.DEM2N, CMI selected 7
features and so 7 results are shown.

6.2 Results on Test Data

In Table 6 there are several distinctions between the criteria, the mostgwikivhich is the failure
of MIFS to select an informative feature set. The importance of balancmgntignitude of the
relevancy and the redundancy can be seen whilst looking at the ofteziacin this test. Those
criteria which balance the magnitudes, (CMIM, JMI, & mMRMR) perform bettan those which
do not (ICAP,CIFE). The DISR criterion forms an outlier here as it penpoorly when compared
to JMI. The only difference between these two criteria is the normalization®iRBtas such, this is
the likely cause of the observed poor performance, the introduction of vadance by estimating
the normalizatiorH (X X;Y).

We can also see how important the low dimensional approximation is, as evesD@Qhraining
examples CMI cannot estimate the required joint distribution to avoid selecthggrdespite being
a direct iterative maximisation of the conditional likelihood in the limit of datapoints.

Criterion BER | AUC | Features (%)| Probes (%)
MIM 4.18 | 95.82 4.00 0.00
MIFS 42.00| 58.00 4.00 58.50
CIFE 6.85 | 93.15 2.00 0.00
ICAP 4.17 | 95.83 1.60 0.00
CMIM 2.86 | 97.14 2.80 0.00
CMI 8.06 | 91.94 0.20 20.00
MRMR 2.94 | 97.06 3.20 0.00
JMI 3.51 | 96.49 4.00 0.00
DISR 8.03 | 91.97 4.00 0.00

| Winning Challenge Entry | 1.35 | 98.71] 183 | 0.0 |

Table 6: NIPS FS Challenge Results: GISETTE.

The MADELON results (Table 7) show a particularly interesting point—the tofopaers (in
terms of BER) are JMI and CIFE. Both these criteria include the classitemmal redundancy term,
but CIFE does not balance the influence of relevancy against radandIn this case, it appears
the ‘balancing’ issue, so important in our previous experiments seems ¢ditikevimportance—
instead, the presence of the conditional redundancy term is the difteneg factor between criteria
(note the poor performance of MIFS/IMRMR). This is perhaps not singr given the nature of the
MADELON data, constructed precisely to require features to be evaljmitely.

It is interesting to note that the challenge organisers benchmarked a 3NYl the optimal
feature set, achieving a 10% test error (Guyon, 2003). Many of tteziarmanaged to select feature
sets which achieved a similar error rate using a 3-NN, and it is likely that a saphkisticated
classifier is required to further improve performance.

This concludes our experimental study—in the following, we make furthes linkhe literature
for the theoretical framework, and discuss implications for future work.
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Criterion BER | AUC | Features (%)| Probes (%)
MIM 10.78| 89.22 2.20 0.00
MIFS 46.06| 53.94 2.60 92.31
CIFE 9.50 | 90.50 3.80 0.00
ICAP 11.11| 88.89 1.60 0.00
CMIM 11.83]| 88.17 2.20 0.00
CMI 21.39| 78.61 0.80 0.00
MRMR 35.83| 64.17 3.40 82.35
JMI 9.50 | 90.50 3.20 0.00
DISR 9.56 | 90.44 3.40 0.00
| Winning Challenge Entry | 7.11 | 96.95] 1.6 \ 0.0 |

Table 7: NIPS FS Challenge Results: MADELON.

7. Related Work: Strong and Weak Relevance

Kohavi and John (1997) proposed definitionsttbngandweakfeature relevance. The definitions
are formed from statements about the conditional probability distribution®afthables involved.
We can re-state the definitions of Kohavi and John (hereafter KJ) in tefmsitual information,
and see how they can fit into our conditional likelihood maximisation framewarkhe notation
below, notationX; indicates thath feature in the overall set, and notationX\i indicates the set
{X\X}, all featureexceptheith.

Definition 8 : Strongly Relevant Feature (Kohavi and John, 1997)
Feature X is strongly relevanto Y iff there exists an assignment of valugsyx x; for which
POX =X, X\ = Xj) > 0and pY =y|X =x,Xj = Xj) # P(Y = y|X; = x)-

Corollary 9 A feature Xis strongly relevaniff | (X;;Y[X,;) > 0.

Proof The KL divergenceDg (p(Y|X2) || p(y|z)) > 0 iff p(y|x2) # p(y|z) for some assignment of
valuesx,y, z. A simple re-application of the manipulations leading to Equation (5) demonstinates
the expected KL-divergendg{ p(y|x2)||p(y|z)} is equal to the mutual informatior{X;Y|Z). In
the definition of strong relevance, if there exists a single assignment @fsxaly, x,; that satisfies
the inequality, therix{ p(y|xix;)||p(Y|x\i) } > 0 and thereforé(X;; Y|X,;) > 0. [ |

Given the framework we have presented, we can note that this stromgrreéecomes from a com-
bination ofthree terms

LGS YIX\) = TOG5Y) = TG X) + XX [Y).
This view of strong relevance demonstrates explicitly that a feature may édunaly irrelevant

(i.e., p(y|x) = p(y) and thud (X;;Y) = 0), but still strongly relevant if(X;; X,i|Y) —1(X; X;) > 0.

Definition 10 : Weakly Relevant Feature (Kohavi and John, 1997)

Feature Xis weakly relevanto Y iff it is not strongly relevant and there exists a subset%,;, and
an assignment of valueg ¥, z for which pX; = x;,Z = z) > O such that Y = y|X = x,Z =2) #
p(Y =Yy|Z=2).
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Corollary 11 A feature Xis weakly relevant to Y iff it is not strongly relevant anitY|Z) > 0
for some ZC Xi;.

Proof This follows immediately from the proof for the strong relevance above. |

It is interesting, and somewhat non-intuitive, that there can be cases titeee areo strongly
relevant features, bull are weakly relevant. This will occur for example in a data set where all
features have exact duplicates: we hal f2atures and/i, Xy, = X;. In this case, for anyy
(such thak < M) we will havel (X; Y |X,;) = O since its duplicate featubé, .« will carry the same
information. In this case, for any featuXg (such thak < M) that is strongly relevant in the data
set{Xy,...,Xu }, it is weaklyrelevant in the data s€Xj, ..., Xom }.

This issue can be dealt with by refining our definition of relevance withewsjp a subset of
the full feature space. A particular subset about which we have somenafion is the currently
selected seB. We can relate our framework to KJ's definitions in this context. FollowingsKJ’
formulations,

Definition 12 : Relevance with respect to the current Set
Feature Xisrelevantto Y with respect to S iff there exists an assignment of valygssfor which
p(X =x%,S=s)>0and pY =y|X =X%,S=s) # p(Y =y|S=5).

Corollary 13 Feature Xis relevantto Y with respect to S, iffX;;Y|S) > 0.

A feature that is relevant with respect$as either strongly or weakly relevant (in the KJ sense)
but it is not possible to determine in which class it lies, as we have not corlitionX,;. Notice
that the definition coincides exactly with the forward selection heuristic (iefin2), which we
have shown is a hill-climber on the conditional likelihood. As a result, welsatehill-climbing on
the conditional likelihood corresponds to adding thestrelevant feature with respect to the current
set S Again we re-emphasize, that the resultant gain in the likelihood comes fommbination of
three sources

16 Y1) = 1(X:Y) = 1(%:S) +1(X: SIY).

It could easily be the case thdiX;;Y) = 0, that is a feature is entirely irrelevant when considered
on its own—>but the sum of the two redundancy terms results in a positive faluex;;Y|S). We
see that if a criterion does not attempt to model both of the redundancy teversjf only using
low dimensional approximations, it runs the risk of evaluating the relevainggincorrectly.

Definition 14 : Irrelevance with respect to the current Set
Feature X is irrelevantto Y with respect to S iff’ x;, y, s for which pX; = x,S=s) > 0 and

p(Y =YX =x,S=95) = p(Y =y|S=s).
Corollary 15 Feature Xisirrelevantto Y with respectto S, iff X;;Y|S) = 0.

In a forward step, if a featung is irrelevant with respect t§, adding it alone té& will not increase
the conditional likelihood However, there may be further additions3an the future, giving us a
selected seB; we may then find thak; is thenrelevantwith respect t&S. In a backward step we
check whether a feature is irrelevant with respect30X; }, using the test(X;;Y[{S\Xi}) = 0. In
this case, removing this featunll not decrease the conditional likelihood.
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8. Related Work: Structure Learning in Bayesian Networks

The framework we have described also serves to highlight a number oftamptinks to the liter-
ature on structure learning of directed acyclic graphical (DAG) modeatsl(k2011). The problem
of DAG learning from observed data is known to be NP-hard (Chickeeingl., 2004), and as
such there exist two main families of approximate algorithigtric or Score-and-Searclearn-
ers construct a graph by searching the space of DAGs directly, asgigrscore to each based on
properties of the graph in relation to the observed data; probably the netidtvawn score is the
BIC measure (Korb, 2011). However, the space of DAGs is superexpial in the number of vari-
ables, and hence an exhaustive search rapidly becomes computatiofeabitite. Grossman and
Domingos (2004) proposed a greedy hill-climbing search over structusayy conditional likeli-
hood as a scoring criterion. Their work found significant advantagma frsing this ‘discriminative’
learning objective, as opposed to the traditional ‘generative’ joint liketihdiche potential of this
discriminative model perspective will be expanded upon in Section 9.3.

Constraintlearners approach the problem from a constructivist point of viedingdand remov-
ing arcs from a single DAG according to conditional independence tests thie data. When the
candidate DAG passes all conditional independence statements obsehedata, it is considered
to be a good model. In the current paper, for a feature to be eligible flusinn, we required that
[(X;Y|S) > 0. This is equivalent to a conditional independenceXgstl/ Y | S. One well-known
problem with constraint learners is that if a test gives an incorrecityéla error can ‘cascade’,
causing the algorithm to draw further incorrect conclusions on the nktstnrcture. This problem
is also true of the popular greedy-search heuristics that we havelmatsir this work.

In Section 3.2, we showed that Markov Blanket algorithms (Tsamardinak, &2003) are an
example of the framework we propose. Specifically, the solution to Equatjas & (possibly non-
unigue) Markov Blanket, and the solution to Equation (8) is exactly the Mdokandary that is, a
minimal, unique blanket. It is interesting to note that these algorithms, which asdrécted class
of structure learners, assurf@thfulnesof the data distribution. We can see straightforwardly that
all criteria we have considered, when combined with a greedy forwdedts®, also make this
assumption.

9. Conclusion

This work has presented a unifying framework for information theoretitufe selection, bringing
almost two decades of research on heuristic scoring criteria underla giegretical interpretation.
This is achieved via a novel interpretation of information theoretic featleetien asan optimiza-
tion of the conditional likelihooé-this is in contrast to the current view of mutual information, as a
heuristic measure of feature relevancy.

9.1 Summary of Contributions

In Section 3 we showed how to decompose the conditional likelihood into thmees,teach with
their own interpretation in relation to the feature selection problem. One of #raseges as a
conditional mutual informationThis observation allows us to answer the following question:
What are the implicit statistical assumptions of mutual information critefi@@ investigations
have revealed that the various criteria published over the past twoeteasslalapproximate iter-
ative maximisers of the conditional likelihootihe approximations are due to implicit assumptions
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on the data distribution: some are more restrictive than others, and are diétéection 4. The
approximations, while heuristic, are necessary due to the need to estimatkrheagisional proba-
bility distributions. The popular Markov Blanket learning algorithm IAMB islimbed in this class
of procedures, hence can also bee seen as an iterative maximiser ofdhtonal likelihood.

The main differences between criteria are whether they includlass-conditionaterm, and
whether they provide a mechanismidalancethe relative size of the redundancy terms against the
relevancy term. To ascertain how these differences impact the criteriadtiqe, we conducted an
empirical study of 9 different heuristic mutual information criteria acrosd&a sets. We analyzed
how the criteria behave in large/small sample situations, how the stability of eetdieature sets
varies between criteria, and how similar criteria are in the feature sets tivegy.rin particular, the
following questions were investigated:

How do the theoretical properties translate to classifier accura@@®mmarising the perfor-
mance of the criteria under the above conditions, including the class-caoraditesm isnot always
necessary. Various criteria, for example MRMR, are successful ufitinis term. However, with-
out this term criteria are blind to certain classes of problems, for examplB|AIELON data set,
and will perform poorly in these cases. Balancing the relevancy anthdaghcy terms is however
extremelyimportant—criteria like MIFS, or CIFE, that allow redundancy to swamp releyaare
ranked lowest for accuracy in almost all experiments. In addition, this imbaléends to cause
large instability in the returned feature sets—being highly sensitive to thdisdgiata.

How stable are the criteria to small changes in the da&&eral criteria return wildly different
feature sets with just small changes in the data, while others return similarasttsime, hence
are ‘stable’ procedures. The most stable was the univariate mutuahiafion, followed closely by
JMI (Yang and Moody, 1999; Meyer et al., 2008); while among the Idaies are MIFS (Battiti,
1994) and ICAP (Jakulin, 2005). As visualised by multi-dimensional scafiri§igure 5, several
criteria appear to return quite similar sets, while there are some outliers.

How do criteria behave in limited and extreme small-sample situationsPextreme small-
sample situations, it appears the above rules (regarding the conditiomahbelr the balancing of
relevancy-redundancy) can be broken—the poor estimation of distrisuti@ans the theoretical
properties do not translate immediately to performance.

9.2 Advice for the Practitioner

From our investigations we have identified three desirable characteriStiecsinformation based
selection criterion. The first is whether it includes reference to a condltimlundancy term—
criteria that do not incorporate it are effectively blind to an entire clapsaiflems, those with strong
class-conditional dependencies. The second is whether it keepdatieersize of the redundancy
term from swamping the relevancy term. We find this toelseentiawithout this control, the
relevancy of théth feature can easily be ignored in the selection process dueke-theedundancy
terms. The third is simply whether the criterion is a low-dimensional approximdatence making
it usable with small sample sizes. On GISETTE with 6000 examples, we weléetinaelect more
than 13 features with any kind of reliability. Therefore, low dimensionalaximations, the focus
of this article, are essential.

A summary of the criteria is shown in Table 8. Overall we find only 3 criteriagh#sfy these
properties: CMIM, JMI and DISR. We recommend the JMI criterion, asfeimpirical investi-
gations it has the best trade-off (in the Pareto-optimal sense) of agcana stability. DISR is
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a normalised variant of JIMI—in practice we found little need for this normalisaiitd the extra
computation involved. If higher stability is required—the MIM criterion, asextpd, displayed the
highest stability with respect to variations in the data—therefore in extremepdatssituations we
would recommend this as a first step. If speed is required, the CMIM critadmits an fast exact
implementation giving orders of magnitude speed-up over a straightfoimatdmentation—refer
to Fleuret (2004) for details.
To aid replicability of this work, implementations of all criteria we have discussegrovided

at: http://wwv. cs. man. ac. uk/ ~gbr own/ f st ool box/

] \MlM mRMR MIFS CMIM JMI DISR ICAP CIFE CMl\

Cond Redund term? 0O O O O O O O 0 O
Balances rel/red? O O O O O O O O O
Estimable? O O O O O O O O O

Table 8: Summary of criteria. They have been arranged left to right Erafthscending estimation
difficulty. Cond Redund terndoes it include the conditional redundancy terBetances
rel/red. does it balance the relevance and redundancy teEstifhable does it use a low
dimensional approximation, making it usable with small samples?

9.3 Future Work

While advice on the suitability of existing criteria is of course useful, pertzapsore interest-
ing result of this work is the perspective it brings to the feature selectioblggm. We were able
to explicitly state an objective function, and derive an appropriate informatiordbzgerion to
maximise it. This begs the question, what selection criteria would result frderelit objective
functions? Dmochowski et al. (2010) study a weighted conditional likeh@md its suitabil-
ity for cost-sensitive problems—it is possible (though outside the scopeasop#éper) to derive
information-based criteria in this context. The reverse question is equalhestitey, what objec-
tive functions are implied by other existing criteria, such as the Gini Indet& KL-divergence
(which defines the mutual information) is a special case of a wider family obunes, based on
the f-divergence—could we obtain similar efficient criteria that pursue thesesunes, and what
overall objectives do they imply?

In this work we explored criteria that use pairwise (il€Xy; X;)) approximations to the derived
objective. These approximations are commonly used as they providecmaddes heuristic while
still being (relatively) simple to estimate. There has been work which suggésting this pairwise
approximation, and thus increasing the number of terms (Brown, 200%Méxl., 2008), but there
is little exploration of how much data is required to estimate these multivariate infomiatims. A
theoretical analysis of the tradeoff between estimation accuracy and adtlititormation provided
by these more complex terms could provide interesting directions for improvengaiver of filter
feature selection techniques.

A very interesting direction concerns the motivation behind the conditiondihided as an ob-
jective. It can be noted that the conditional likelihood, though a well-aedegbjective function in
its own right, can be derived from a probabilistic discriminative model, asvislléVe approximate
the true distributiorp with our modelq, with three distinct parameter se&for feature selection,
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1 for classification, and modelling the input distributiorp(x). Following Minka (2005), in the
construction of a discriminative model, our joint likelihood is

L(@v 6, Tv}\) = p(e,r) p(}\) uq(yl ’XI ) e7T)q(XI ‘)\)

In this type of model, we wish to maximize with respect td (our feature selection parameters)
andt (our model parameters), and are not concerned with the generatammgi@rs\. Excluding
the generative terms gives

Lux&nx)mpmguﬁgwuhan.

When we have no particular bias or prior knowledge over which subidetitures or parameters
are more likely (i.e., a flat priop(6, 1)), this reduces to the conditional likelihood:

M@@nMDﬁﬁWﬂ&m

which was exactly our starting point for the current paper. An obvioctisnsion here is to take
a non-uniform prior over features. An important direction for machinenieg is to incorporate
domain knowledgeA non-uniform prior would mean influencing the search procedure trpee
rate our background knowledge of the features. This is applicablexéonigle in gene expression
data, when we may have information about the metabolic pathways in which gerteipate, and
therefore which genes are likely to influence certain biological functidhss is outside the scope
of this paper but is the focus of our current research.
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Appendix A.
The following proofs make use of the identityA; B|C) — I (A;B) = 1 (A;C|B) — I (A;C).

A.1 Proof of Equation (17)

The Joint Mutual Informatiorcriterion (Yang and Moody, 1999) can be written,
Jjmi(Xe) = L (XeXj3Y),

:)Zimgw+u&ﬂxﬂ-
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The termzxjesl (Xj;Y) in the above is constant with respect to ¥eargument that we are inter-
ested in, so can be omitted. The criterion therefore reduces to (17) agdpllo

iji(xk) = X%S[I (Xk;Y|xj)}
= ><és[l (X Y) = (X Xj) +1(Xe; X |Y)]

:ys|><|(xk;Y)—XZ [I(Xk;Xj)—l(Xk?leY)}

j€S
1
D1X%Y) ~ g 5 [10%X5) =106 [Y) .
’S j€ES
A.2 Proof of Equation (19)

The rearrangement of the Conditional Mutual Information criterion (EEg@004) follows a very
similar procedure. The original, and its rewriting are,

Jomin(%) = goin[1(% Y1)
= min [l (Xk;Y)—I(Xk§Xj)+|(Xk;Xj|Y)}

XjeS
= 10%Y) + i [H (XX IY) 106
= 104 Y) — max(1 (% X)) — 1 (%6 )] Y) .

XjeS

which is exactly Equation (19).
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