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Mikel Luj án MIKEL .LUJAN@CS.MANCHESTER.AC.UK

School of Computer Science
University of Manchester
Manchester M13 9PL, UK

Editor: Isabelle Guyon

Abstract
We present a unifying framework for information theoretic feature selection, bringing almost two
decades of research on heuristic filter criteria under a single theoretical interpretation. This is in
response to the question:“what are the implicit statistical assumptions of feature selection criteria
based on mutual information?”. To answer this, we adopt a different strategy than is usual in the
feature selection literature—instead of trying todefinea criterion, wederiveone, directly from a
clearly specified objective function: the conditional likelihood of the training labels. While many
hand-designed heuristic criteria try to optimize a definition of feature ‘relevancy’ and ‘redundancy’,
our approach leads to a probabilistic framework which naturally incorporates these concepts. As
a result we can unify the numerous criteria published over the last two decades, and show them
to be low-order approximations to the exact (but intractable) optimisation problem. The primary
contribution is to show thatcommon heuristics for information based feature selection(including
Markov Blanket algorithms as a special case) are approximate iterative maximisers of the con-
ditional likelihood. A large empirical study provides strong evidence to favour certain classes of
criteria, in particular those that balance the relative size of the relevancy/redundancy terms. Overall
we conclude that the JMI criterion (Yang and Moody, 1999; Meyer et al., 2008) provides the best
tradeoff in terms of accuracy, stability, and flexibility with small data samples.
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1. Introduction

High dimensional data sets are a significant challenge for Machine Learning. Some of the most
practically relevant and high-impact applications, such asgene expressiondata, may easily have
more than 10,000 features. Many of these features may be completelyirrelevant to the task at
hand, orredundantin the context of others. Learning in this situation raises important issues, for
example, over-fitting to irrelevant aspects of the data, and the computationalburden of processing
many similar features that provide redundant information. It is therefore animportant research
direction to automatically identify meaningful smaller subsets of these variables,that is, feature
selection.

Feature selection techniques can be broadly grouped into approaches that are classifier-dependent
(‘wrapper’ and ‘embedded’ methods), and classifier-independent (‘filter’ methods). Wrapper meth-
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ods search the space of feature subsets, using the training/validation accuracy of a particular classi-
fier as the measure of utility for a candidate subset. This may deliver significant advantages in gen-
eralisation, though has the disadvantage of a considerable computational expense, and may produce
subsets that are overly specific to the classifier used. As a result, any change in the learning model is
likely to render the feature set suboptimal. Embedded methods (Guyon et al., 2006, Chapter 3) ex-
ploit the structure of specific classes of learning models toguidethe feature selection process. While
the defining component of a wrapper method is simply the search procedure, the defining compo-
nent of an embedded method is a criterion derived through fundamental knowledge of a specific
class of functions. An example is the method introduced by Weston et al. (2001), selecting features
to minimize a generalisation bound that holds for Support Vector Machines. These methods are
less computationally expensive, and less prone to overfitting than wrappers, but still use quite strict
model structure assumptions. In contrast,filter methods (Duch, 2006) separate the classification
and feature selection components, and define a heuristicscoring criterionto act as a proxy measure
of the classification accuracy. Filters evaluate statistics of the dataindependentlyof any particular
classifier, thereby extracting features that are generic, having incorporated few assumptions.

Each of these three approaches has its advantages and disadvantages, the primary distinguish-
ing factors being speed of computation, and the chance of overfitting. In general, in terms of speed,
filters are faster than embedded methods which are in turn faster than wrappers. In terms of overfit-
ting, wrappers have higher learning capacity so are more likely to overfit than embedded methods,
which in turn are more likely to overfit than filter methods. All of this of course changes with ex-
tremes of data/feature availability—for example, embedded methods will likely outperform filter
methods in generalisation error as the number of datapoints increases, andwrappers become more
computationally unfeasible as the number of features increases. A primary advantage of filters is
that they are relatively cheap in terms of computational expense, and are generally more amenable
to a theoretical analysis of their design. Such theoretical analysis is the focus of this article.

The defining component of a filter method is therelevance index(also known as aselec-
tion/scoring criterion), quantifying the ‘utility’ of including a particular feature in the set. Nu-
merous hand-designed heuristics have been suggested (Duch, 2006), all attempting to maximise
feature ‘relevancy’ and minimise ‘redundancy’. However, few of these are motivated from a solid
theoretical foundation. It is preferable to start from a more principled perspective—the desired
approach is outlined eloquently by Guyon:

“It is important to start with a clean mathematical statement of the problem addressed
[...] It should be made clear how optimally the chosen approach addresses the problem
stated. Finally, the eventual approximations made by the algorithm to solve theoptimi-
sation problem stated should be explained. An interesting topic of researchwould be
to ‘retrofit’ successful heuristic algorithms in a theoretical framework.”(Guyon et al.,
2006, pg. 21)

In this work we adopt this approach—instead of trying todefinefeature relevance indices, we
derivethem starting from a clearly specified objective function. The objective wechoose is a well
accepted statistical principle,the conditional likelihood of the class labels given the features. As a
result we are able to provide deeper insight into the feature selection problem, and achieve precisely
the goal above, to retrofit numerous hand-designed heuristics into a theoretical framework.
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2. Background

In this section we give a brief introduction to information theoretic concepts, followed by a summary
of how they have been used to tackle the feature selection problem.

2.1 Entropy and Mutual Information

The fundamental unit of information is theentropyof a random variable, discussed in several stan-
dard texts, most prominently (Cover and Thomas, 1991). The entropy, denotedH(X), quantifies the
uncertainty present in the distribution ofX. It is defined as,

H(X) =−∑
x∈X

p(x) logp(x),

where the lower casex denotes a possible value that the variableX can adopt from the alphabet
X . To compute1 this, we need an estimate of the distributionp(X). WhenX is discrete this can
be estimated by frequency counts from data, that is ˆp(x) = #x

N , the fraction of observations taking
on valuex from the totalN. We provide more discussion on this issue in Section 3.3. If the
distribution is highly biased toward one particular eventx ∈ X , that is, little uncertainty over the
outcome, then the entropy is low. If all events are equally likely, that is, maximumuncertainty over
the outcome, thenH(X) is maximal.2 Following the standard rules of probability theory, entropy
can beconditionedon other events. Theconditional entropyof X givenY is denoted,

H(X|Y) =− ∑
y∈Y

p(y) ∑
x∈X

p(x|y) logp(x|y).

This can be thought of as the amount of uncertainty remaining inX after we learn the outcome ofY.
We can now define theMutual Information(Shannon, 1948) betweenX andY, that is, the amount
of informationsharedby X andY, as follows:

I(X;Y) = H(X)−H(X|Y)

= ∑
x∈X

∑
y∈Y

p(xy) log
p(xy)

p(x)p(y)
.

This is the difference of two entropies—the uncertaintybefore Yis known,H(X), and the uncer-
tainty after Y is known,H(X|Y). This can also be interpreted as the amount of uncertainty inX
which is removed by knowingY, thus following the intuitive meaning of mutual information as the
amount of information that one variable provides about another. It should be noted that the Mutual
Information is symmetric, that is,I(X;Y) = I(Y;X), and is zero if and only if the variables are sta-
tistically independent, that isp(xy) = p(x)p(y). The relation between these quantities can be seen
in Figure 1. The Mutual Information can also be conditioned—theconditional informationis,

I(X;Y|Z) = H(X|Z)−H(X|YZ)

= ∑
z∈Z

p(z) ∑
x∈X

∑
y∈Y

p(xy|z) log
p(xy|z)

p(x|z)p(y|z)
.

1. The base of the logarithm is arbitrary, but decides the ‘units’ of the entropy. When using base 2, the units are ‘bits’,
when using basee, the units are ‘nats.’

2. In general, 0≤ H(X)≤ log(|X |).
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Figure 1: Illustration of various information theoretic quantities.

This can be thought of as the information still shared betweenX andY after the value of a third
variable,Z, is revealed. The conditional mutual information will emerge as a particularly important
property in understanding the results of this work.

This section has briefly covered the principles of information theory; in the following section
we discuss motivations for using it to solve the feature selection problem.

2.2 Filter Criteria Based on Mutual Information

Filter methods are defined by a criterionJ, also referred to as a ‘relevance index’ or ‘scoring’
criterion (Duch, 2006), which is intended to measure how potentially usefula feature or feature
subset may be when used in a classifier. An intuitiveJ would be some measure of correlation
between the feature and the class label—the intuition being that a stronger correlation between
these should imply a greater predictive ability when using the feature. For a class labelY, the
mutual informationscore for a featureXk is

Jmim(Xk) = I(Xk;Y). (1)

This heuristic, which considers a score for each feature independentlyof others, has been used
many times in the literature, for example, Lewis (1992). We refer to this featurescoring criterion
as ‘MIM’, standing forMutual Information Maximisation. To use this measure we simply rank the
features in order of their MIM score, and select the topK features, whereK is decided by some
predefined need for a certain number of features or some other stoppingcriterion (Duch, 2006). A
commonly cited justification for this measure is that the mutual information can be used to write
both an upper and lower bound on the Bayes error rate (Fano, 1961; Hellman and Raviv, 1970). An
important limitation is that this assumes that each feature is independent of all other features—and
effectively ranks the features in descending order of their individualmutual information content.
However, where features may be interdependent, this is known to be suboptimal. In general, it
is widely accepted that a useful and parsimonious set of features shouldnot only be individually
relevant, but also should not beredundantwith respect to each other—features should not be highly
correlated. The reader is warned that while this statement seems appealinglyintuitive, it is not
strictly correct, as will be expanded upon in later sections. In spite of this, several criteria have
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been proposed that attempt to pursue this ‘relevancy-redundancy’ goal. For example, Battiti (1994)
presents theMutual Information Feature Selection(MIFS) criterion:

Jmi f s(Xk) = I(Xk;Y)−β ∑
Xj∈S

I(Xk;Xj),

whereS is the set of currently selected features. This includes theI(Xk;Y) term to ensure feature
relevance, but introduces a penalty to enforce low correlations with features already selected in
S. Note that this assumes we are selecting featuressequentially, iteratively constructing our final
feature subset. For a survey of other search methods than simple sequential selection, the reader
is referred to Duch (2006); however it should be noted that all theoretical results presented in this
paper will be generally applicable to any search procedure, and basedsolely on properties of the
criteria themselves. Theβ in the MIFS criterion is a configurable parameter, which must be set
experimentally. Usingβ = 0 would be equivalent toJmim(Xk), selecting features independently,
while a larger value will place more emphasis on reducing inter-feature dependencies. In experi-
ments, Battiti found thatβ = 1 is often optimal, though with no strong theory to explain why. The
MIFS criterion focuses on reducingredundancy; an alternative approach was proposed by Yang and
Moody (1999), and also later by Meyer et al. (2008) using theJoint Mutual Information(JMI), to
focus on increasingcomplementaryinformation between features. The JMI score for featureXk is

Jjmi(Xk) = ∑
Xj∈S

I(XkXj ;Y).

This is the information between the targets and ajoint random variableXkXj , defined by pair-
ing the candidateXk with each feature previously selected. The idea is if the candidate feature is
‘complementary’ with existing features, we should include it.

The MIFS and JMI schemes were the first of many criteria that attempted to manage the
relevance-redundancy tradeoff with various heuristic terms, howeverit is clear they have very dif-
ferent motivations. The criteria identified in the literature 1992-2011 are listed in Table 1. The
practice in this research problem has been tohand-designcriteria, piecing criteria together as a jig-
saw of information theoretic terms—the overall aim to manage the relevance-redundancy trade-off,
with each new criterion motivated from a different direction. Several questions arise here: Which
criterion should we believe? What do they assume about the data? Are thereother useful criteria,
as yet undiscovered? In the following section we offer a novel perspective on this problem.

3. A Novel Approach

In the following sections we formulate the feature selection task as a conditional likelihood problem.
We will demonstrate that precise links can be drawn between the well-accepted statistical framework
of likelihood functions, and the current feature selection heuristics of mutual information criteria.

3.1 A Conditional Likelihood Problem

We assume an underlying i.i.d. processp : X→Y, from which we have a sample ofN observations.
Each observation is a pair(x,y), consisting of ad-dimensional feature vectorx = [x1, ...,xd]

T , and
a target classy, drawn from the underlying random variablesX = {X1, ...,Xd} andY. Furthermore,
we assume thatp(y|x) is defined by asubsetof thed features inx, while the remaining features are
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Criterion Full name Authors
MIM Mutual Information Maximisation Lewis (1992)
MIFS Mutual Information Feature Selection Battiti (1994)
KS Koller-Sahami metric Koller and Sahami (1996)
JMI Joint Mutual Information Yang and Moody (1999)
MIFS-U MIFS-‘Uniform’ Kwak and Choi (2002)
IF Informative Fragments Vidal-Naquet and Ullman (2003)
FCBF Fast Correlation Based Filter Yu and Liu (2004)
AMIFS Adaptive MIFS Tesmer and Estevez (2004)
CMIM Conditional Mutual Info Maximisation Fleuret (2004)
MRMR Max-Relevance Min-Redundancy Peng et al. (2005)
ICAP Interaction Capping Jakulin (2005)
CIFE Conditional Infomax Feature Extraction Lin and Tang (2006)
DISR Double Input Symmetrical Relevance Meyer and Bontempi (2006)
MINRED Minimum Redundancy Duch (2006)
IGFS Interaction Gain Feature Selection El Akadi et al. (2008)
SOA Second Order Approximation Guo and Nixon (2009)
CMIFS Conditional MIFS Cheng et al. (2011)

Table 1: Various information-based criteria from the literature. Sections 3 and 4 will show how
these can all be interpreted in a single theoretical framework.

irrelevant. Our modeling task is therefore two-fold: firstly to identify the features that play a func-
tional role, and secondly to use these features to perform predictions. In this work we concentrate
on the first stage, that of selecting the relevant features.

We adopt ad-dimensional binary vectorθ: a 1 indicating the feature is selected, a 0 indicating it
is discarded. Notationxθ indicates the vector of selected features, that is, the full vectorx projected
onto the dimensions specified byθ. Notationxθ̃ is the complement, that is, the unselected features.
The full feature vector can therefore be expressed asx = {xθ,xθ̃}. As mentioned, we assume the
processp is defined by a subset of the features, so for some unknown optimal vector θ∗, we have
that p(y|x) = p(y|xθ∗). We approximatep using a hypothetical predictive modelq, with two layers
of parameters:θ representing which features are selected, andτ representing parameters used to
predicty. Our problem statement is to identify the minimal subset of features such that wemaximize
the conditional likelihood of the training labels, with respect to these parameters. For i.i.d. data
D = {(xi ,yi); i = 1..N} the conditional likelihood of the labels given parameters{θ,τ} is

L(θ,τ|D) =
N

∏
i=1

q(yi |xi
θ,τ).

The (scaled) conditionallog-likelihood is

ℓ=
1
N

N

∑
i=1

logq(yi |xi
θ,τ). (2)

This is the error function we wish to optimize with respect to the parameters{τ,θ}; the scaling
term has no effect on the optima, but simplifies exposition later. Using conditional likelihood has
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become popular in so-calleddiscriminativemodelling applications, where we are interested only
in the classification performance; for example Grossman and Domingos (2004) used it to learn
Bayesian Network classifiers. We will expand upon this link to discriminative models in Section
9.3. Maximising conditional likelihood corresponds to minimising KL-divergence between the true
and predicted class posterior probabilities—for classification, we often only require thecorrect
class, and not precise estimates of the posteriors, hence Equation (2) is aproxy lower bound for
classification accuracy.

We now introduce the quantityp(y|xθ): this is the true distribution of the class labels given the
selected featuresxθ. It is important to note the distinction fromp(y|x), the true distribution given
all features. Multiplying and dividingq by p(y|xθ), we can re-write the above as,

ℓ =
1
N

N

∑
i=1

log
q(yi |xi

θ,τ)
p(yi |xi

θ)
+

1
N

N

∑
i=1

logp(yi |xi
θ). (3)

The second term in (3) can be similarly expanded, introducing the probabilityp(y|x):

ℓ =
1
N

N

∑
i=1

log
q(yi |xi

θ,τ)
p(yi |xi

θ)
+

1
N

N

∑
i=1

log
p(yi |xi

θ)

p(yi |xi)
+

1
N

N

∑
i=1

logp(yi |xi).

These are finite sample approximations, drawing datapoints i.i.d. with respect tothe distribution
p(xy). We useExy{·} to denote statistical expectation, and for convenience we negate the above,
turning our maximisation problem into a minimisation. This gives us,

−ℓ ≈ Exy

{
log

p(y|xθ)

q(y|xθ,τ)

}
+Exy

{
log

p(y|x)
p(y|xθ)

}
−Exy

{
logp(y|x)

}
. (4)

These three terms have interesting properties which together define the feature selection prob-
lem. It is particularly interesting to note that the second term ispreciselythat introduced by Koller
and Sahami (1996) in their definitions of optimal feature selection. In their work, the term was
adopted ad-hoc as a sensible objective to follow—here we have shown it tobe a direct and nat-
ural consequence of adopting the conditional likelihood as an objective function. Remembering
x = {xθ,xθ̃}, this second term can be developed:

∆KS = Exy

{
log

p(y|x)
p(y|xθ)

}

= ∑
xy

p(xy) log
p(y|xθxθ̃)

p(y|xθ)

= ∑
xy

p(xy) log
p(y|xθxθ̃)

p(y|xθ)

p(xθ̃|xθ)

p(xθ̃|xθ)

= ∑
xy

p(xy) log
p(xθ̃y|xθ)

p(xθ̃|xθ)p(y|xθ)

= I(Xθ̃;Y|Xθ). (5)

This is the conditional mutual information between the class label and the remaining features, given
the selected features. We can note also that the third term in (4) is another information theoretic
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quantity, the conditional entropyH(Y|X). In summary, we see that our objective function can be
decomposed into three distinct terms, each with its own interpretation:

lim
N→∞
−ℓ = Exy

{
log

p(y|xθ)

q(y|xθ,τ)

}
+ I(Xθ̃;Y|Xθ)+H(Y|X). (6)

The first term is a likelihood ratio between the true and the predicted class distributions given
the selected features, averaged over the input space. The size of this term will depend on how well
the modelq can approximatep, given the supplied features.3 Whenθ takes on the true valueθ∗ (or
consists of a superset ofθ∗) this becomes a KL-divergencep||q. The second term isI(Xθ̃;Y|Xθ),
the conditional mutual information between the class label and the unselected features, given the
selected features. The size of this term depends solely on the choice of features, and will decrease
as the selected feature setXθ explains more aboutY, until eventually becoming zero when the
remaining featuresXθ̃ contain no additional information aboutY in the context ofXθ. It can be
noted that due to the chain rule, we have

I(X;Y) = I(Xθ;Y)+ I(Xθ̃;Y|Xθ),

hence minimizingI(Xθ̃;Y|Xθ) is equivalent to maximisingI(Xθ;Y). The final term isH(Y|X), the
conditional entropy of the labels givenall features. This term quantifies the uncertainty still remain-
ing in the label even when we knowall possiblefeatures; it is an irreducible constant, independent
of all parameters, and in fact forms a bound on the Bayes error (Fano,1961).

These three terms make explicit the effect of the feature selection parametersθ, separating them
from the effect of the parametersτ in the model thatusesthose features. If we somehow had the
optimal feature subsetθ∗, which perfectly captured the underlying processp, thenI(Xθ̃;Y|Xθ) would
be zero. The remaining (reducible) error is then down to the KL divergence p||q, expressing how
well the predictive modelq canmake useof the provided features. Of course, different modelsq
will have different predictive ability: a good feature subset will not necessarily be put to good use if
the model is too simple to express the underlying function. This perspective was also considered by
Tsamardinos and Aliferis (2003), and earlier by Kohavi and John (1997)—the above results place
these in the context of a precise objective function, the conditional likelihood. For the remainder of
the paper we will use the same assumption as that made implicitly byall filter selection methods.
For completeness, here we make the assumption explicit:

Definition 1 : Filter assumption
Given an objective function for a classifier, we can address the problems ofoptimizing the feature set
and optimizing the classifier in two stages: first picking good features, then building the classifier
to use them.

This implies that the second term in (6) can be optimized independently of the first. In this section
we have formulated the feature selection task as a conditional likelihood problem. In the following,
we consider how this problem statement relates to the existing literature, and discuss how to solve
it in practice: including how to optimize the feature selection parameters, and theestimation of the
necessary distributions.

3. In fact, ifq is aconsistentestimator, this term will approach zero with largeN.
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3.2 Optimizing the Feature Selection Parameters

Under the filter assumption in Definition 1, Equation (6) demonstrates that the optima of the condi-
tional likelihood coincide with that of the conditional mutual information:

argmax
θ

L(θ|D) = argmin
θ

I(Xθ̃;Y|Xθ). (7)

There may of course be multiple global optima, in addition to the trivial minimum of selecting all
features. With this in mind, we can introduce a minimality constraint on the size of thefeature set,
and define our problem:

θ∗ = argmin
θ′
{|θ′| : θ′ = argmin

θ
I(Xθ̃;Y|Xθ)}. (8)

This is the smallest feature setXθ, such that the mutual informationI(Xθ̃;Y|Xθ) is minimal, and
thus the conditional likelihood is maximal. It should be remembered that the likelihood is only our
proxy for classification error, and the minimal feature set in terms of classification could be smaller
than that which optimises likelihood. In the following paragraphs, we consider how this problem is
implicitly tackled by methods already in the literature.

A common heuristic approach is a sequential search considering featuresone-by-one for ad-
dition/removal; this is used for example in Markov Blanket learning algorithms such as IAMB
(Tsamardinos et al., 2003). We will now demonstrate that this sequential search heuristic is in fact
equivalent to a greedy iterative optimisation of Equation (8). To understand this we must time-index
the feature sets. NotationXθt/Xθ̃t indicates the selected and unselected feature sets at timestept—
with a slight abuse of notation treating these interchangeably as sets and random variables.

Definition 2 : Forward Selection Step with Mutual Information
The forward selection step adds the feature with the maximum mutual information inthe context of
the currently selected set Xθt . The operations performed are:

Xk = argmax
Xk∈Xθ̃t

I(Xk;Y|Xθt ),

Xθt+1 ← Xθt ∪Xk,

Xθ̃t+1 ← Xθ̃t\Xk.

A subtle (but important) implementation point for this selection heuristic is that it should not add
another feature if∀Xk, I(Xk;Y|Xθ) = 0. This ensures we will not unnecessarily increase the size of
the feature set.

Theorem 3 The forward selection mutual information heuristic adds the feature that generates the
largest possible increase in the conditional likelihood—a greedy iterative maximisation.

Proof With the definitions above and the chain rule of mutual information, we have that:

I(Xθ̃t+1;Y|Xθt+1) = I(Xθ̃t ;Y|Xθt )− I(Xk;Y|Xθt ).

The featureXk that maximises I(Xk;Y|Xθt ) is the same thatminimizes I(Xθ̃t+1;Y|Xθt+1); therefore
the forward step is a greedyminimizationof our objectiveI(Xθ̃;Y|Xθ), and therefore maximises the
conditional likelihood.
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Definition 4 : Backward Elimination Step with Mutual Information
In a backward step, a feature is removed—the utility of a feature Xk is considered as its mutual
information with the target, conditioned on all other elements of the selected setwithout Xk. The
operations performed are:

Xk = argmin
Xk∈Xθt

I(Xk;Y|{Xθt\Xk}).

Xθt+1 ← Xθt\Xk

Xθ̃t+1 ← Xθ̃t ∪Xk

Theorem 5 The backward elimination mutual information heuristic removes the feature that causes
the minimum possible decrease in the conditional likelihood.

Proof With these definitions and the chain rule of mutual information, we have that:

I(Xθ̃t+1;Y|Xθt+1) = I(Xθ̃t ;Y|Xθt )+ I(Xk;Y|Xθt+1).

The featureXk thatminimizes I(Xk;Y|Xθt+1) is that which keepsI(Xθ̃t+1;Y|Xθt+1) as close as possi-
ble to I(Xθ̃t ;Y|Xθt ); therefore the backward elimination step removes a feature while attempting to
maintain the likelihood as close as possible to its current value.

To strictly achieve our optimization goal, a backward step shouldonly remove a feature if
I(Xk;Y|{Xθt\Xk}) = 0. In practice, working with real data, there will likely be estimation errors
(see the following section) and thus very rarely the strict zero will be observed. This brings us to an
interesting corollary regarding IAMB (Tsamardinos and Aliferis, 2003).

Corollary 6 Since the IAMB algorithm uses precisely these forward/backward selectionheuristics,
it is a greedy iterative maximisation of the conditional likelihood. In IAMB, a backward elimination
step is only accepted if I(Xk;Y|{Xθt\Xk})≈ 0, and otherwise the procedure terminates.

In Tsamardinos and Aliferis (2003) it is shown that IAMB returns the Markov Blanket of any
target node in a Bayesian network, and that this set coincides with the strongly relevant features in
the definitions from Kohavi and John (1997). The precise links to this literature are explored further
in Section 7. The IAMB family of algorithms adopt a common assumption, that the data is faithful
to some unknown Bayesian Network. In the cases where this assumption holds, the procedure was
proven to identify the unique Markov Blanket. Since IAMB uses precisely the forward/backward
steps we have derived, we can conclude thatthe Markov Blanket coincides with the (unique) maxi-
mum of the conditional likelihood function.A more recent variation of the IAMB algorithm, called
MMMB (Min-Max Markov Blanket) uses a series of optimisations to mitigate the requirement of
exponential amounts of data to estimate the relevant statistical quantities. Theseoptimisations do
not change the underlying behaviour of the algorithm, as it still maximises the conditional likelihood
for the selected feature set, however they do slightly obscure the strong linkto our framework.
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3.3 Estimation of the Mutual Information Terms

In considering the forward/backward heuristics, we must take accountof the fact that we do not
have perfect knowledge of the mutual information. This is because we have implicitly assumed
we have access to the true distributionsp(xy), p(y|xθ), etc. In practice we have to estimate these
from data. The problem calculating mutual information reduces to that ofentropy estimation, and
is fundamental in statistics (Paninski, 2003). The mutual information is definedas the expected
logarithm of a ratio:

I(X;Y) = Exy

{
log

p(xy)
p(x)p(y)

}
.

We can estimate this, since the Strong Law of Large Numbers assures us thatthe sample estimate
usingp̂ convergesalmost surelyto the expected value—for a dataset ofN i.i.d. observations(xi ,yi),

I(X;Y)≈ Î(X;Y) =
1
N

N

∑
i=1

log
p̂(xiyi)

p̂(xi)p̂(yi)
.

In order to calculate this we need the estimated distributions ˆp(xy), p̂(x), andp̂(y). The computation
of entropies for continuous or ordinal data is highly non-trivial, and requires an assumed model of
the underlying distributions—to simplify experiments throughout this article, we use discrete data,
and estimate distributions withhistogram estimatorsusing fixed-width bins. The probability of
any particular eventp(X = x) is estimated by maximum likelihood, the frequency of occurrence of
the eventX = x divided by the total number of events (i.e., datapoints). For more information on
alternative entropy estimation procedures, we refer the reader to Paninski (2003).

At this point we must note that the approximation above holdsonly if N is largerelative to
the dimension of the distributions over x and y.For example ifx,y are binary,N ≈ 100 should
be more than sufficient to get reliable estimates; however ifx,y are multinomial, this will likely
be insufficient. In the context of the sequential selection heuristics we have discussed, we are
approximatingI(Xk;Y|Xθ) as,

I(Xk;Y|Xθ)≈ Î(Xk;Y|Xθ) =
1
N

N

∑
i=1

log
p̂(xi

ky
i |xi

θ)

p̂(xi
k|x

i
θ)p̂(y

i |xi
θ)
. (9)

As the dimension of the variableXθ grows (i.e., as we add more features) then the necessary
probability distributions become more high dimensional, and hence our estimate ofthe mutual
information becomes less reliable. This in turn causes increasingly poor judgements for the in-
clusion/exclusion of features. For precisely this reason, the researchcommunity have developed
various low-dimensional approximations to (9). In the following sections, wewill investigate the
implicit statistical assumptions and empirical effects of these approximations.

In the remainder of this paper, we useI(X;Y) to denote the ideal case of being able to compute
the mutual information, though in practice on real data we use the finite sample estimateÎ(X;Y).

3.4 Summary

In these sections we have in effectreverse-engineereda mutual information-based selection scheme,
starting from a clearly defined conditional likelihood problem, and discussed estimation of the var-
ious quantities involved. In the following sections we will show that we can retrofit numerous
existing relevancy-redundancy heuristics from the feature selection literature into this probabilistic
framework.
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4. Retrofitting Successful Heuristics

In the previous section, starting from a clearly defined conditional likelihood problem, we derived
a greedy optimization process which assesses features based on a simple scoring criterion on the
utility of including a featureXk ∈ Xθ̃. The score for a featureXk is,

Jcmi(Xk) = I(Xk;Y|S), (10)

wherecmistands for conditional mutual information, and for notational brevity we nowuseS= Xθ
for the currently selected set. An important question is, how does (10) relate to existing heuristics
in the literature, such as MIFS? We will see that MIFS, and certain other criteria, can be phrased
cleanly aslinear combinationsof Shannon entropy terms, while some are non-linear combinations,
involving maxor minoperations.

4.1 Criteria as Linear Combinations of Shannon Information Terms

Repeating the MIFS criterion for clarity,

Jmi f s(Xk) = I(Xk;Y)−β ∑
Xj∈S

I(Xk;Xj). (11)

We can see that we first need to rearrange (10) into the form of a simple relevancy term betweenXk

andY, plus some additional terms, before we can compare it to MIFS. Using the identity I(A;B|C)−
I(A;B) = I(A;C|B)− I(A;C), we can re-express (10) as,

Jcmi(Xk) = I(Xk;Y|S) = I(Xk;Y)− I(Xk;S)+ I(Xk;S|Y). (12)

It is interesting to see terms in this expression corresponding to the conceptsof ‘relevancy’ and
‘redundancy’, that is,I(Xk;Y) and I(Xk;S). The score will be increased if the relevancy ofXk is
large and the redundancy with existing features is small. This is in accordance with a common view
in the feature selection literature, observing that we wish to avoid redundant variables. However,
we can also see an important additional termI(Xk;S|Y), which is not traditionally accounted for in
the feature selection literature—we call this theconditional redundancy. This term has the opposite
sign to the redundancyI(Xk;S), henceJcmi will be increased when this is large, that is, a strong class-
conditional dependence ofXk with the existing setS. Thus, we come to the important conclusion
that the inclusion of correlated features can be useful, provided the correlationwithin classesis
stronger than the overall correlation. We note that this is a similar observationto that of Guyon
et al. (2006), that “correlation does not imply redundancy”—Equation (12) effectively embodies
this statement in information theoretic terms.

The sum of the last two terms in (12) represents the three-way interaction between the existing
feature setS, the targetY, and the candidate featureXk being considered for inclusion inS. To
further understand this, we can note the following property:

I(XkS;Y) = I(S;Y)+ I(Xk;Y|S) = I(S;Y)+ I(Xk;Y)− I(Xk;S)+ I(Xk;S|Y).

We see that ifI(Xk;S)> I(Xk;S|Y), then the total utility when includingXk, that isI(XkS;Y), is less
than the sum of the individual relevanciesI(S;Y)+ I(Xk;Y). This can be interpreted asXk having
unnecessary duplicated information. In the opposite case, whenI(Xk;S) < I(Xk;S|Y), thenXk and
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Scombine well and provide more informationtogetherthan by the sum of their parts,I(S;Y), and
I(Xk;Y).

The important point to take away from this expression is that the terms are in atrade-off—we
do not require a feature with low redundancy for its own sake, but instead require a feature that best
trades off the three terms so as to maximise the score overall. Much like the bias-variance dilemma,
attempting to decrease one term is likely to increase another.

The relation of (10) and (11) can be seen with assumptions on the underlying distributionp(xy).
Writing the latter two terms of (12) as entropies:

Jcmi(Xk) = I(Xk;Y)

− H(S)+H(S|Xk)

+ H(S|Y)−H(S|XkY). (13)

To develop this further, we require an assumption.

Assumption 1 For all unselected features Xk ∈ Xθ̃, assume the following,

p(xθ|xk) = ∏
j∈S

p(x j |xk)

p(xθ|xky) = ∏
j∈S

p(x j |xky).

This states that the selected features Xθ are independent and class-conditionally independent given
the unselected feature Xk under consideration.

Using this, Equation (13) becomes,

J′cmi(Xk) = I(Xk;Y)

− H(S)+ ∑
j∈S

H(Xj |Xk)

+ H(S|Y)−∑
j∈S

H(Xj |XkY).

where the prime onJ indicates we are making assumptions on the distribution. Now, if we introduce
∑ j∈SH(Xj)−∑ j∈SH(Xj), and∑ j∈SH(Xj |Y)−∑ j∈SH(Xj |Y), we recover mutual information terms,
between the candidate feature and each member of the setS, plus some additional terms,

J′cmi(Xk) = I(Xk;Y)

− ∑
j∈S

I(Xj ;Xk)+ ∑
j∈S

H(Xj)−H(S)

+ ∑
j∈S

I(Xj ;Xk|Y)−∑
j∈S

H(Xj |Y)+H(S|Y). (14)

Several of the terms in (14) are constant with respect toXk—as such, removing them will haveno
effect on the choice of feature. Removing these terms, we have an equivalent criterion,

J′cmi(Xk) = I(Xk;Y)−∑
j∈S

I(Xj ;Xk)+ ∑
j∈S

I(Xj ;Xk|Y). (15)
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This has in fact already appeared in the literature as a filter criterion, originally proposed by Lin
and Tang (2006), as Conditional Infomax Feature Extraction (CIFE), though it has been repeatedly
rediscovered by other authors (El Akadi et al., 2008; Guo and Nixon,2009). It is particularly
interesting as it represents a sort of ‘root’ criterion, from which several others can be derived. For
example, the link to MIFS can be seen with one further assumption, that the features are pairwise
class-conditionally independent.

Assumption 2 For all features i, j, assume p(xix j |y) = p(xi |y)p(x j |y). This states that the features
are pairwise class-conditionally independent.

With this assumption, the term∑ I(Xj ;Xk|Y) will be zero, and (15) becomes (11), the MIFS
criterion, withβ = 1. Theβ parameter in MIFS can be interpreted as encoding a strength of belief
in another assumption, that of unconditional independence.

Assumption 3 For all features i, j, assume p(xix j) = p(xi)p(x j). This states that the features are
pairwise independent.

A β close to zero implies very strong belief in the independence statement, indicatingthat any
measured associationI(Xj ;Xk) is in fact spurious, possibly due to noise in the data. Aβ value closer
to 1 implies a lesser belief, that any measured dependencyI(Xj ;Xk) should be incorporated into the
feature score exactly as observed. Since MIM is produced by settingβ = 0, we can see that MIM
also adopts Assumption 3. The same line of reasoning can be applied to a verysimilar criterion
proposed by Peng et al. (2005), theMinimum-Redundancy Maximum-Relevancecriterion,

Jmrmr(Xk) = I(Xk;Y)−
1
|S|∑j∈S

I(Xk;Xj).

Since mRMR omits the conditional redundancy term entirely, it is implicitly using Assumption 2.
The β coefficient has been set inversely proportional to the size of the current feature set. If we
have a large setS, thenβ will be extremely small. The interpretation is then that as the setSgrows,
mRMR adopts a stronger belief in Assumption 3. In the original paper, (Penget al., 2005, Section
2.3) it was claimed that mRMR is equivalent to (10). In this section, through making explicit the
intrinsic assumptions of the criterion, we have clearly illustrated that this claim is incorrect.

Balagani and Phoha (2010) present an analysis of the three criteria mRMR, MIFS and CIFE,
arriving at similar results to our own: that these criteria make highly restrictive assumptions on
the underlying data distributions. Though the conclusions are similar, our approach includes their
results as a special case, and makes explicit the link to a likelihood function.

The relation of the MIFS/mRMR to Equation (15) is relatively straightforward.It is more chal-
lenging to consider how closely other criteria might be re-expressed in this form. Yang and Moody
(1999) propose usingJoint Mutual Information(JMI),

Jjmi(Xk) = ∑
j∈S

I(XkXj ;Y). (16)

Using some relatively simple manipulations (see appendix) this can be re-writtenas,

Jjmi(Xk) = I(Xk;Y)−
1
|S|∑j∈S

[
I(Xk;Xj)− I(Xk;Xj |Y)

]
. (17)
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This criterion (17) returnsexactlythe same set of features as the JMI criterion (16); however in
this form, we can see the relation to our proposed framework. The JMI criterion, like mRMR, has a
stronger belief in the pairwise independence assumptions as the feature set Sgrows. Similarities can
of course be observed between JMI, MIFS and mRMR—the differencesbeing the scaling factor and
the conditional term—and their subsequent relation to Equation (15). It is in fact possible to identify
numerous criteria from the literature that can all be re-written into a common form, corresponding to
variations upon (15). Aspaceof potential criteria can be imagined, where we parameterize criterion
(15) as so:

J′cmi = I(Xk;Y)−β ∑
j∈S

I(Xj ;Xk)+ γ ∑
j∈S

I(Xj ;Xk|Y). (18)

Figure 2 shows how the criteria we have discussed so far can all be fitted inside this unit square
corresponding toβ/γ parameters. MIFS sits on the left hand axis of the square—withγ = 0 and
β∈ [0,1]. The MIM criterion, Equation (1), which simply assesses each feature individually without
any regard of others, sits at the bottom left, withγ= 0,β= 0. The top right of the square corresponds
to γ = 1,β = 1, which is the CIFE criterion (Lin and Tang, 2006), also suggested by ElAkadi et al.
(2008) and Guo and Nixon (2009). A very similar criterion, using an assumption to approximate
the terms, was proposed by Cheng et al. (2011).

The JMI and mRMR criteria are unique in that theymove linearlywithin the space as the feature
setS grows. As the size of the setS increases they move closer towards the origin and the MIM
criterion. The particularly interesting point about this property is that therelative magnitudeof
the relevancy term to the redundancy terms stays approximately constant asSgrows, whereas with
MIFS, the redundancy term will in general be|S| times bigger than the relevancy term. The conse-
quences of this will be explored in the experimental section of this paper. Any criterion expressible
in the unit square has made independence Assumption 1. In addition, any criteria that sit at points
other thanβ = 1,γ = 1 have adopted varying degrees of belief in Assumptions 2 and 3.

A further interesting point about this square is simply that it is sparsely populated. An obvious
unexplored region is the bottom right, the corner corresponding toβ = 0,γ = 1; though there is
no clear intuitive justification for this point, for completeness in the experimentalsection we will
evaluate it, as theconditional redundancyor ‘condred’ criterion. In previous work (Brown, 2009)
we explored this unit square, though derived from an expansion of themutual information function
rather than directly from the conditional likelihood. While this resulted in an identical expression
to (18), the probabilistic framework we present here is far more expressive, allowing exact specifi-
cation of the underlying assumptions.

The unit square of Figure 2 describeslinear criteria, named as so since they are linear combi-
nations of the relevance/redundancy terms. There exist other criteria that follow a similar form, but
involving other operations, making themnon-linear.

4.2 Criteria as Non-Linear Combinations of Shannon Information Terms

Fleuret (2004) proposed theConditional Mutual Information Maximizationcriterion,

Jcmim(Xk) = min
Xj∈S

[
I(Xk;Y|Xj)

]
.

This can be re-written,

Jcmim(Xk) = I(Xk;Y)−max
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj |Y)

]
. (19)

41



BROWN, POCOCK, ZHAO AND LUJÁN

Figure 2: The full space oflinear filter criteria, describing several examples from Table 1. Note
thatall criteria in this space adopt Assumption 1. Additionally, theγ andβ axes represent
the criteria belief in Assumptions 2 and 3, respectively. The left hand axis iswhere
the mRMR and MIFS algorithms sit. The bottom left corner, MIM, is the assumptionof
completely independent features, using just marginal mutual information. Note that some
criteria are equivalent at particular sizes of the current feature set|S|.

The proof is again available in the appendix. Due to themaxoperator, the probabilistic interpretation
is a little less straightforward. It is clear however that CMIM adopts Assumption 1, since it evaluates
only pairwise feature statistics.

Vidal-Naquet and Ullman (2003) propose another criterion used in Computer Vision, which we
refer to asInformative Fragments,

Ji f (Xk) = min
Xj∈S

[
I(XkXj ;Y)− I(Xj ;Y)

]
.

The authors motivate this criterion by noting that it measures the gain of combining a new feature
Xk with each existing featureXj , over simply usingXj by itself. TheXj with the least ‘gain’ from
being paired withXk is taken as the score forXk. Interestingly, using the chain ruleI(XkXj ;Y) =
I(Xj ;Y)+ I(Xk;Y|Xj), therefore IF is equivalent to CMIM, that is,Ji f (Xk) = Jcmim(Xk), making the
same assumptions. Jakulin (2005) proposed the criterion,

Jicap(Xk) = I(Xk;Y)− ∑
Xj∈S

max
[
0,{I(Xk;Xj)− I(Xk;Xj |Y)}

]
.

Again, this adopts Assumption 1, using the same redundancy andconditionalredundancy terms, yet
the exact probabilistic interpretation is unclear.

An interesting class of criteria use a normalisation term on the mutual information tooffset
the inherent bias toward high arity features (Duch, 2006). An example ofthis is Double Input
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Symmetrical Relevance(Meyer and Bontempi, 2006), a modification of the JMI criterion:

Jdisr(Xk) = ∑
Xj∈S

I(XkXj ;Y)
H(XkXjY)

.

The inclusion of this normalisation term breaks the strong theoretical link to a likelihood function,
but again for completeness we will include this in our empirical investigations. While the criteria
in the unit square can have their probabilistic assumptions made explicit, the nonlinearity in the
CMIM, ICAP and DISR criteria make such an interpretation far more difficult.

4.3 Summary of Theoretical Findings

In this section we have shown that numerous criteria published over the past two decades of research
can be ‘retro-fitted’ into the framework we have proposed—the criteria are approximations to (10),
each making different assumptions on the underlying distributions. Since in the previous section we
saw that accepting the top ranked feature according to (10) provides themaximum possible increase
in the likelihood, we see now that the criteria areapproximatemaximisers of the likelihood. Whether
or not they indeed provide the maximum increase at each step will depend onhow well the implicit
assumptions on the data can be trusted. Also, it should be remembered that even if we used (10), it
is not guaranteed to find the global optimum of the likelihood, since (a) it is a greedy search, and (b)
finite data will mean distributions cannot be accurately modelled. In this case, we have reached the
limit of what a theoretical analysis can tell us about the criteria, and we must close the remaining
‘gaps’ in our understanding with an experimental study.

5. Experiments

In this section we empirically evaluate some of the criteria in the literature against one another. Note
that we are not pursuing an exhaustive analysis, attempting to identify the ‘winning’ criterion that
provides best performance overall4—rather, we primarily observe how the theoretical properties
of criteria relate to the similarity of the returned feature sets. While these properties are interest-
ing, we of course must acknowledge that classification performance is theultimate evaluation of a
criterion—hence we also include here classification results on UCI data setsand in Section 6 on the
well-known benchmark NIPS Feature Selection Challenge.

In the following sections, we ask the questions: “how stable is a criterion to small changes in
the training data set?”, “how similar are the criteria to each other?”, “how do the different criteria
behave in limited and extreme small-sample situations?”, and finally, “what is the relation between
stability and accuracy?”.

To address these questions, we use the 15 data sets detailed in Table 2. These are chosen to have
a wide variety of example-feature ratios, and a range of multi-class problems. The features within
each data set have a variety of characteristics—some binary/discrete, and some continuous. Con-
tinuous features were discretized, using an equal-width strategy into 5 bins, while features already
with a categorical range were left untouched. The ‘ratio’ statistic quoted inthe final column is an
indicator of the difficulty of the feature selection for each data set. This uses the number of data-
points (N), the median arity of the features (m), and the number of classes (c)—the ratio quoted in

4. In any case, the No Free Lunch Theorem applies here also (Tsamardinos and Aliferis, 2003).
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the table for each data set isNmc, hence a smaller value indicates a more challenging feature selection
problem.

A key point of this work is to understand the statistical assumptions on the data imposed by the
feature selection criteria—if our classification model were to make even more assumptions, this is
likely to obscure the experimental observations relating performance to theoretical properties. For
this reason, in all experiments we use a simple nearest neighbour classifier(k = 3), this is chosen
as it makes few (if any) assumptions about the data, and we avoid the need for parameter tuning.
For the feature selection search procedure, the filter criteria are appliedusing a simple forward
selection, to select a fixed number of features, specified in each experiment, before being used with
the classifier.

Data Features Examples ClassesRatio
breast 30 569 2 57
congress 16 435 2 72
heart 13 270 2 34
ionosphere 34 351 2 35
krvskp 36 3196 2 799
landsat 36 6435 6 214
lungcancer 56 32 3 4
parkinsons 22 195 2 20
semeion 256 1593 10 80
sonar 60 208 2 21
soybeansmall 35 47 4 6
spect 22 267 2 67
splice 60 3175 3 265
waveform 40 5000 3 333
wine 13 178 3 12

Table 2: Data sets used in experiments. The final column indicates the difficultyof the data in
feature selection, a smaller value indicating a more challenging problem.

5.1 How Stable are the Criteria to Small Changes in the Data?

The set of features selected by any procedure will of course dependon the data provided. It is a
plausible complaint if the set of returned features varies wildly with only slightvariations in the
supplied data. This is an issue reminiscent of thebias-variance dilemma, where the sensitivity of a
classifier to its initial conditions causes high variance responses. However, while the bias-variance
decomposition is well-defined and understood, the corresponding issue for feature selection, the
‘stability’, has only recently been studied. The stability of a feature selectioncriterion requires
a measure to quantify the ‘similarity’ between two selected feature sets. This was first discussed
by Kalousis et al. (2007), who investigated several measures, with the final recommendation being
the Tanimoto distance between sets. Such set-intersection measures seem appropriate, but have
limitations; for example, if two criteria selected identical feature sets of size 10,we might be less
surprised if we knew the overall pool of features was of size 12, than ifit was size 12,000. To account
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for this, Kuncheva (2007) presents aconsistency index, based on the hypergeometric distribution
with a correction for chance.

Definition 7 The consistency for two subsets A,B⊂ X, such that|A| = |B| = k, and r= |A∩B|,
where0< k< |X|= n, is

C(A,B) =
rn−k2

k(n−k)
.

The consistency takes values in the range[−1,+1], with a positive value indicating similar sets,
a zero value indicating a purely random relation, and a negative value indicating a strong anti-
correlation between the features sets.

One problem with the consistency index is that it does not take featureredundancyinto account.
That is, two procedures could select features which have different array indices, so are identified as
‘different’, but in fact are so highly correlated that they are effectively identical. A method to deal
with this situation was proposed by Yu et al. (2008). This method constructs aweighted complete
bipartite graph, where the two node sets correspond to two different feature sets, and weights are
assigned to the arcs are the normalized mutual information between the features at the nodes, also
sometimes referred to as the symmetrical uncertainty. The weight between node i in set A, and node
j in set B, is

w(A(i),B( j)) =
I(XA(i);XB( j))

H(XA(i))+H(XB( j))
.

The Hungarian algorithm is then applied to identify the maximum weighted matching between the
two node sets, and the overall similarity between sets A and B is the final matchingcost. This is the
information consistencyof the two sets. For more details, we refer to Yu et al. (2008).

We now compare these two measures on the criteria from the previous sections. For each data
set, we take a bootstrap sample and select a set of features using each feature selection criterion.
The (information) stability of a single criterion is quantified as the average pairwise (information)
consistency across 50 bootstraps from the training data.

Figure 3 shows Kuncheva’s stability measure on average over 15 data sets, selecting feature sets
of size 10; note that the criteria have been displayed ordered left-to-right by their median value of
stability over the 15 data sets. The marginal mutual information, MIM, is as expected the most
stable, given that it has the lowest dimensional distribution to approximate. The next most stable is
JMI which includes the relevancy/redundancy terms, butaveragesover the current feature set; this
averaging process might therefore be interpreted empirically as a form of‘smoothing’, enabling the
criteria overall to be resistant to poor estimation of probability distributions. Itcan be noted that the
far right of Figure 3 consists of the MIFS, ICAP and CIFE criteria, all ofwhich do not attempt to
average the redundancy terms.

Figure 4 shows the same data sets, but instead theinformation stabilityis computed; as men-
tioned, this should take into account the fact that some features are highly correlated. Interestingly,
the two box-plots show broadly similar results. MIM is the most stable, and CIFEis the least stable,
though here we see that JMI, DISR, and MRMR are actually more stable thanKuncheva’s stability
index can reflect. An interesting line of future research might be to combine the best of these two
stability measures—one that can take into account both feature redundancy and a correction for
random chance.
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Figure 3: Kuncheva’s Stability Index across 15 data sets. The box indicates the upper/lower quar-
tiles, the horizontal line within each shows the median value, while the dotted crossbars
indicate the maximum/minimum values. For convenience of interpretation, criteria onthe
x-axis are ordered by their median value.

Figure 4: Yu et al’s Information Stability Index across 15 data sets. For comparison, criteria on the
x-axis are ordered identically to Figure 3. The general picture emerges similarly, though
the information stability index is able to take feature redundancy into account, showing
that some criteria are slightly more stable than expected.
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(a) Kuncheva’s Consistency Index. (b) Yu et al’s Information Stability Index.

Figure 5: Relations between feature sets generated by different criteria, on average over 15 data
sets. 2-D visualisation generated by classical multi-dimensional scaling.

5.2 How Similar are the Criteria?

Two criteria can be directly compared with the same methodology: by measuring the consistency
and information consistency between selected feature subsets on a common set of data. We calculate
the mean consistencies between two feature sets of size 10, repeatedly selected over 50 bootstraps
from the original data. This is then arranged in a similarity matrix, and we use classical multi-
dimensional scaling to visualise this as a 2-d map, shown in Figures 5a and 5b.Note again that while
the indices may return different absolute values (one is a normalized mean ofa hypergeometric
distribution and the other is a pairwise sum of mutual information terms) they showvery similar
relative ‘distances’ between criteria.

Both diagrams show a cluster of several criteria, and 4 clear outliers: MIFS, CIFE, ICAP and
CondRed. The 5 criteria clustering in the upper left of the space appear toreturn relatively similar
feature sets. The 4 outliers appear to return quite significantly different feature sets, both from
the clustered set, and from each other. A common characteristic of these 4 outliers is that they do
not scale the redundancy or conditional redundancy information terms. In these criteria, the upper
bound on the redundancy term∑ j∈SI(Xk;Xj) grows linearly with the number of selected features,
whilst the upper bound on the relevancy termI(Xk;Y) remains constant. When this happens the
relevancy term is overwhelmed by the redundancy term and thus the criterion selects features with
minimal redundancy, rather than trading off between the two terms. This leadsto strongly divergent
feature sets being selected, which is reflected in the stability of the criteria. Each of the outliers
are different from each other as they have different combinations of redundancy and conditional
redundancy. We will see this ‘balance’ between relevancy and redundancy emerge as a common
theme in the experiments over the next few sections.
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5.3 How do Criteria Behave in Limited and Extreme Small-sample Situations?

To assess how criteria behave in data poor situations, we vary the number of datapoints supplied to
perform the feature selection. The procedure was to randomly select 140 datapoints, then use the
remaining data as a hold-out set. From this 140, the number provided to eachcriterion was increased
in steps of 10, from a minimal set of size 20. To allow a reasonable testing set size, we limited this
assessment to only data sets with at least 200 datapoints total; this gives us 11data sets from the 15,
omitting lungcancer, parkinsons, soybeansmall, andwine. For each data set we select 10 features
and apply the 3-nn classifier, recording the rank-order of the criteria interms of their generalisation
error. This process was repeated and averaged over 50 trials, giving the results in Figure 6.

To aid interpretation we label MIM with a simple point marker, MIFS, CIFE, CondRed, and
ICAP with a circle, and the remaining criteria (DISR, JMI, mRMR and CMIM) witha star. The
criteria labelled with a star balance the relative magnitude of the relevancy andredundancy terms,
those with a circle do not attempt to balance them, and MIM contains no redundancy term. There
is a clear separation between those criteria with a star outperforming those witha circle, and MIM
varying in performance between the two groups as we allow more training datapoints.

Notice that the highest ranked criteria coincide with those in the cluster at the top left of Figures
5a and 5b. We suggest that the relative difference in performance is due to the same reason noted
in Section 5.2, that the redundancy term grows with the size of the selected feature set. In this case,
the redundancy term eventually grows to outweigh the relevancy by a largedegree, and the new
features are selected solely on the basis of redundancy, ignoring the relevance, thus leading to poor
classification performance.
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Figure 6: Average ranks of criteria in terms of test error, selecting 10 features, across 11 data sets.
Note the clear dominance of criteria which do not allow the redundancy term toover-
whelm the relevancy term (unfilled markers) over those that allow redundancy to grow
with the size of the feature set (filled markers).
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Data Features Examples Classes
Colon 2000 62 2
Leukemia 7070 72 2
Lung 325 73 7
Lymph 4026 96 9
NCI9 9712 60 9

Table 3: Data sets from Peng et al. (2005), used in experiments.

5.4 Extreme Small-Sample Experiments

In the previous sections we discussed two theoretical properties of information-based feature se-
lection criteria: whether it balances the relative magnitude of relevancy against redundancy, and
whether it includes a class-conditional redundancy term. Empirically on the UCI data sets, we see
that the balancing is far more important than the inclusion of the conditional redundancy term—for
example, MRMR succeeds in many cases, while MIFS performs poorly. Now, we consider whether
same property may hold in extreme small-sample situations, when the number of examples is so
low that reliable estimation of distributions becomes extremely difficult. We use datasourced from
Peng et al. (2005), detailed in Table 3. Results are shown in Figure 7, selecting 50 features from
each data set and plotting leave-one-out classification error. It shouldof course be remembered that
on such small data sets, making just one additional datapoint error can result in seemingly large
changes in accuracy. For example, the difference between the best and worst criteria on Leukemia
was just 3 datapoints. In contrast to the UCI results, the picture is less clear. On Colon, the criteria
all perform similarly; this is the least complex of all the data sets, having the smallest number of
classes with a (relatively) small number of features. As we move through thedata sets with in-
creasing numbers of features/classes, we see that MIFS, CONDRED, CIFE and ICAP start to break
away, performing poorly compared to the others. Again, we note that thesedo not attempt to bal-
ance relevancy/redundancy. This difference is clearest on the NCI9data, the most complex with 9
classes and 9712 features. However, as we may expect with such high dimensional and challenging
problems, there are some exceptions—the Colon data as mentioned, and also the Lung data where
ICAP/MIFS perform well.

5.5 What is the Relation Between Stability and Accuracy?

An important question is whether we can find a good balance between the stability of a criterion
and the classification accuracy. This was considered by Gulgezen et al.(2009), who studied the sta-
bility/accuracy trade-off for the MRMR criterion. In the following, we consider this trade-off in the
context ofPareto-optimality, across the 9 criteria, and the 15 data sets from Table 2. Experimental
protocol was to take 50 bootstraps from the data set, each time calculating the out-of-bag error using
the 3-nn. The stability measure was Kuncheva’s stability index calculated from the 50 feature sets,
and the accuracy was the mean out-of-bag accuracy across the 50 bootstraps. The experiments were
also repeated using the Information Stability measure, revealing almost identical results. Results
using Kuncheva’s stability index are shown in Figure 8.

The Pareto-optimal setis defined as the set of criteria for which no other criterion has both
a higher accuracy and a higher stability, hence the members of the Pareto-optimal set are said to
benon-dominated(Fonseca and Fleming, 1996). Thus, each of the subfigures of Figure8, criteria
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Figure 7: LOO results on Peng’s data sets : Colon, Lymphoma, Leukemia, Lung, NCI9.

50



FEATURE SELECTION VIA CONDITIONAL L IKELIHOOD

Figure 8: Stabilty (y-axes) versus Accuracy (x-axes) over 50 bootstraps for each of the UCI data
sets. The pareto-optimal rankings are summarised in Table 4.

51



BROWN, POCOCK, ZHAO AND LUJÁN

Accuracy/Stability(Yu) Accuracy/Stability(Kuncheva) Accuracy
JMI (1.6) JMI (1.5) JMI (2.6)

DISR (2.3) DISR (2.2) MRMR (3.6)
MIM (2 .4) MIM (2 .3) DISR (3.7)

MRMR (2.5) MRMR (2.5) CMIM (4.5)
CMIM (3.3) CONDRED (3.2) ICAP (5.3)
ICAP (3.6) CMIM (3.4) MIM (5 .4)

CONDRED (3.7) ICAP (4.3) CIFE (5.9)
CIFE (4.3) CIFE (4.8) MIFS (6.5)
MIFS (4.5) MIFS (4.9) CONDRED (7.4)

Table 4: Column 1:Non-dominated Rank of different criteria for the trade-off of accuracy/stability.
Criteria with a higher rank (closer to 1.0) provide a better tradeoff than those with a lower
rank. Column 2:As column 1 but using Kuncheva’s Stability Index.Column 3:Average
ranks for accuracy alone.

that appear further to the top-right of the spacedominatethose toward the bottom left—in such a
situation there is no reason to choose those at the bottom left, since they are dominated on both
objectives by other criteria.

A summary (for both stability and information stability) is provided in the first two columns of
Table 4, showing thenon-dominated rankof the different criteria. This is computed per data set
as the number of other criteria which dominate a given criterion, in the Pareto-optimal sense, then
averaged over the 15 data sets. We can see that these rankings are similarto the results earlier,
with MIFS, ICAP, CIFE and CondRed performing poorly. We note that JMI, (which both balances
the relevancy and redundancy terms and includes the conditional redundancy) outperforms all other
criteria.

We present the average accuracy ranks across the 50 bootstraps in column 3. These are similar
to the results from Figure 6 but use a bootstrap of the full data set, rather than a small sample
from it. Following Dem̌sar (2006) we analysed these ranks using a Friedman test to determine
which criteria are statistically significantly different from each other. We then used a Nemenyi post-
hoc test to determine which criteria differed, with statistical significances at 90%, 95%, and 99%
confidences. These give a partial ordering for the criteria which we present in Figure 9, showing
a Significant Dominance Partial Orderdiagram. Note that this style of diagram encapsulates the
same information as a Critical Difference diagram (Demšar, 2006), but allows us to display multiple
levels of statistical significance. A bold line connecting two criteria signifies a difference at the 99%
confidence level, a dashed line at the 95% level, and a dotted line at the 90% level. Absence of a link
signifies that we do not have the statistical power to determine the differenceone way or another.
Reading Figure 9, we see that with 99% confidence JMI is significantly superior to CondRed, and
MIFS, but not statistically significantly different from the other criteria. Aswe lower our confidence
level, more differences appear, for example MRMR and MIFS are only significantly different at the
90% confidence level.
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Figure 9: Significant dominance partial-order diagram. Criteria are placedtop to bottom in the di-
agram by their rank taken from column 3 of Table 4. A link joining two criteria means
a statistically significant difference is observed with a Nemenyi post-hoc test at the spec-
ified confidence level. For example JMI is significantly superior to MIFS (β = 1) at the
99% confidence level. Note that the absence of a link does not signify the lack of a statis-
tically significant difference, but that the Nemenyi test does not have sufficient power (in
terms of number of data sets) to determine the outcome (Demšar, 2006). It is interesting
to note that the four bottom ranked criteria correspond to the corners of the unit square
in Figure 2; while the top three (JMI/MRMR/DISR) are all very similar, scaling the re-
dundancy terms by the size of the feature set. The middle ranks belong to CMIM/ICAP,
which are similar in that they use the min/max strategy instead of a linear combination of
terms.
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5.6 Summary of Empirical Findings

From experiments in this section, we conclude that the balance of relevancy/redundancy terms is
extremely important, while the inclusion of a class conditional term seems to matter less. We find
that some criteria are inherently morestablethan others, and that the trade-off between accuracy
(using a simple k-nn classifier) and stability of the feature sets differs between criteria. The best
overall trade-off for accuracy/stability was found in the JMI and MRMR criteria. In the following
section we re-assess these findings, in the context of two problems posedfor the NIPS Feature
Selection Challenge.

6. Performance on the NIPS Feature Selection Challenge

In this section we investigate performance of the criteria on data sets taken from the NIPS Feature
Selection Challenge (Guyon, 2003).

6.1 Experimental Protocols

We present results using GISETTE (a handwriting recognition task), andMADELON (an artificially
generated data set).

Data Features Examples (Tr/Val) Classes
GISETTE 5000 6000/1000 2
MADELON 500 2000/600 2

Table 5: Data sets from the NIPS challenge, used in experiments.

To apply the mutual information criteria, we estimate the necessary distributions using his-
togram estimators: features were discretized independently into 10 equal width bins, with bin
boundaries determined from training data. After the feature selection process the original (undis-
cretised) data sets were used to classify the validation data. Each criterion was used to generate
a ranking for the top 200 features in each data set. We show results using the full top 200 for
GISETTE, but only the top 20 for MADELON as after this point all criteria demonstrated severe
overfitting. We use the Balanced Error Rate, for fair comparison with previously published work on
the NIPS data sets. We accept that this does not necessarily share the same optima as the classifi-
cation error (to which the conditional likelihood relates), and leave investigations of this to future
work.

Validation data results are presented in Figure 10 (GISETTE) and Figure 11 (MADELON). The
minimum of the validation error was used to select the best performing featureset size, the training
data alone used to classify the testing data, and finally test labels were submittedto the challenge
website. Test results are provided in Table 6 for GISETTE, and Table 7 for MADELON.5

Unlike in Section 5, the data sets we have used from the NIPS Feature Selection Challenge
have a greater number of datapoints (GISETTE has 6000 training examples, MADELON has 2000)
and thus we can present results using a direct implementation of Equation (10) as a criterion. We
refer to this criterion as CMI, as it is using the conditional mutual information to score features.
Unfortunately there are still estimation errors in this calculation when selecting alarge number of

5. We do not provide classification confidences as we used a nearest neighbour classifier and thus the AUC is equal to
1− BER.
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Figure 10: Validation Error curve using GISETTE.
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Figure 11: Validation Error curve using MADELON.
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features, even given the large number of datapoints and so the criterion fails to select features after
a certain point, as each feature appears equally irrelevant. In GISETTE, CMI selected 13 features,
and so the top 10 features were used and thus one result is shown. In MADELON, CMI selected 7
features and so 7 results are shown.

6.2 Results on Test Data

In Table 6 there are several distinctions between the criteria, the most striking of which is the failure
of MIFS to select an informative feature set. The importance of balancing the magnitude of the
relevancy and the redundancy can be seen whilst looking at the other criteria in this test. Those
criteria which balance the magnitudes, (CMIM, JMI, & mRMR) perform betterthan those which
do not (ICAP,CIFE). The DISR criterion forms an outlier here as it performs poorly when compared
to JMI. The only difference between these two criteria is the normalization in DISR—as such, this is
the likely cause of the observed poor performance, the introduction of morevariance by estimating
the normalizationH(XkXjY).

We can also see how important the low dimensional approximation is, as even with6000 training
examples CMI cannot estimate the required joint distribution to avoid selecting probes, despite being
a direct iterative maximisation of the conditional likelihood in the limit of datapoints.

Criterion BER AUC Features (%) Probes (%)
MIM 4.18 95.82 4.00 0.00
MIFS 42.00 58.00 4.00 58.50
CIFE 6.85 93.15 2.00 0.00
ICAP 4.17 95.83 1.60 0.00
CMIM 2.86 97.14 2.80 0.00
CMI 8.06 91.94 0.20 20.00
mRMR 2.94 97.06 3.20 0.00
JMI 3.51 96.49 4.00 0.00
DISR 8.03 91.97 4.00 0.00

Winning Challenge Entry 1.35 98.71 18.3 0.0

Table 6: NIPS FS Challenge Results: GISETTE.

The MADELON results (Table 7) show a particularly interesting point—the top performers (in
terms of BER) are JMI and CIFE. Both these criteria include the class-conditional redundancy term,
but CIFE does not balance the influence of relevancy against redundancy. In this case, it appears
the ‘balancing’ issue, so important in our previous experiments seems to have little importance—
instead, the presence of the conditional redundancy term is the differentiating factor between criteria
(note the poor performance of MIFS/MRMR). This is perhaps not surprising given the nature of the
MADELON data, constructed precisely to require features to be evaluatedjointly.

It is interesting to note that the challenge organisers benchmarked a 3-NN using the optimal
feature set, achieving a 10% test error (Guyon, 2003). Many of the criteria managed to select feature
sets which achieved a similar error rate using a 3-NN, and it is likely that a moresophisticated
classifier is required to further improve performance.

This concludes our experimental study—in the following, we make further links to the literature
for the theoretical framework, and discuss implications for future work.
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Criterion BER AUC Features (%) Probes (%)
MIM 10.78 89.22 2.20 0.00
MIFS 46.06 53.94 2.60 92.31
CIFE 9.50 90.50 3.80 0.00
ICAP 11.11 88.89 1.60 0.00
CMIM 11.83 88.17 2.20 0.00
CMI 21.39 78.61 0.80 0.00
mRMR 35.83 64.17 3.40 82.35
JMI 9.50 90.50 3.20 0.00
DISR 9.56 90.44 3.40 0.00

Winning Challenge Entry 7.11 96.95 1.6 0.0

Table 7: NIPS FS Challenge Results: MADELON.

7. Related Work: Strong and Weak Relevance

Kohavi and John (1997) proposed definitions ofstrongandweakfeature relevance. The definitions
are formed from statements about the conditional probability distributions of the variables involved.
We can re-state the definitions of Kohavi and John (hereafter KJ) in termsof mutual information,
and see how they can fit into our conditional likelihood maximisation framework.In the notation
below, notationXi indicates theith feature in the overall setX, and notationX\i indicates the set
{X\Xi}, all featuresexceptthe ith.

Definition 8 : Strongly Relevant Feature (Kohavi and John, 1997)
Feature Xi is strongly relevantto Y iff there exists an assignment of values xi , y, x\i for which
p(Xi = xi ,X\i = x\i)> 0 and p(Y = y|Xi = xi ,X\i = x\i) 6= p(Y = y|X\i = x\i).

Corollary 9 A feature Xi is strongly relevantiff I (Xi ;Y|X\i)> 0.

Proof The KL divergenceDKL(p(y|xz) || p(y|z)) > 0 iff p(y|xz) 6= p(y|z) for some assignment of
valuesx,y,z. A simple re-application of the manipulations leading to Equation (5) demonstratesthat
the expected KL-divergenceExz{p(y|xz)||p(y|z)} is equal to the mutual informationI(X;Y|Z). In
the definition of strong relevance, if there exists a single assignment of valuesxi , y, x\i that satisfies
the inequality, thenEx{p(y|xix\i)||p(y|x\i)}> 0 and thereforeI(Xi ;Y|X\i)> 0.

Given the framework we have presented, we can note that this strong relevance comes from a com-
bination ofthree terms,

I(Xi ;Y|X\i) = I(Xi ;Y)− I(Xi ;X\i)+ I(Xi ;X\i |Y).

This view of strong relevance demonstrates explicitly that a feature may be individually irrelevant
(i.e., p(y|xi) = p(y) and thusI(Xi ;Y) = 0), but still strongly relevant ifI(Xi ;X\i |Y)− I(Xi ;X\i)> 0.

Definition 10 : Weakly Relevant Feature (Kohavi and John, 1997)
Feature Xi is weakly relevantto Y iff it is not strongly relevant and there exists a subset Z⊂ X\i , and
an assignment of values xi , y, z for which p(Xi = xi ,Z = z)> 0 such that p(Y = y|Xi = xi ,Z = z) 6=
p(Y = y|Z = z).
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Corollary 11 A feature Xi is weakly relevant to Y iff it is not strongly relevant and I(Xi ;Y|Z) > 0
for some Z⊂ X\i .

Proof This follows immediately from the proof for the strong relevance above.

It is interesting, and somewhat non-intuitive, that there can be cases where there arenostrongly
relevant features, butall are weakly relevant. This will occur for example in a data set where all
features have exact duplicates: we have 2M features and∀i, XM+i = Xi . In this case, for anyXk

(such thatk< M) we will haveI(Xk;Y|X\i) = 0 since its duplicate featureXM+k will carry the same
information. In this case, for any featureXk (such thatk < M) that is strongly relevant in the data
set{X1, ...,XM}, it is weaklyrelevant in the data set{X1, ...,X2M}.

This issue can be dealt with by refining our definition of relevance with respect to a subset of
the full feature space. A particular subset about which we have some information is the currently
selected setS. We can relate our framework to KJ’s definitions in this context. Following KJ’s
formulations,

Definition 12 : Relevance with respect to the current setS.
Feature Xi is relevantto Y with respect to S iff there exists an assignment of values xi , y, s for which
p(Xi = xi ,S= s)> 0 and p(Y = y|Xi = xi ,S= s) 6= p(Y = y|S= s).

Corollary 13 Feature Xi is relevantto Y with respect to S, iff I(Xi ;Y|S)> 0.

A feature that is relevant with respect toS is either strongly or weakly relevant (in the KJ sense)
but it is not possible to determine in which class it lies, as we have not conditioned onX\i . Notice
that the definition coincides exactly with the forward selection heuristic (Definition 2), which we
have shown is a hill-climber on the conditional likelihood. As a result, we seethat hill-climbing on
the conditional likelihood corresponds to adding themostrelevant feature with respect to the current
set S. Again we re-emphasize, that the resultant gain in the likelihood comes from acombination of
three sources:

I(Xi ;Y|S) = I(Xi ;Y)− I(Xi ;S)+ I(Xi;S|Y).

It could easily be the case thatI(Xi ;Y) = 0, that is a feature is entirely irrelevant when considered
on its own—but the sum of the two redundancy terms results in a positive valuefor I(Xi ;Y|S). We
see that if a criterion does not attempt to model both of the redundancy terms,even if only using
low dimensional approximations, it runs the risk of evaluating the relevance of Xi incorrectly.

Definition 14 : Irrelevance with respect to the current setS.
Feature Xi is irrelevant to Y with respect to S iff∀ xi , y, s for which p(Xi = xi ,S= s) > 0 and
p(Y = y|Xi = xi ,S= s) = p(Y = y|S= s).

Corollary 15 Feature Xi is irrelevantto Y with respect to S, iff I(Xi ;Y|S) = 0.

In a forward step, if a featureXi is irrelevant with respect toS, adding it alone toS will not increase
the conditional likelihood.However, there may be further additions toS in the future, giving us a
selected setS′; we may then find thatXi is thenrelevantwith respect toS′. In a backward step we
check whether a feature is irrelevant with respect to{S\Xi}, using the testI(Xi ;Y|{S\Xi}) = 0. In
this case, removing this featurewill not decrease the conditional likelihood.
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8. Related Work: Structure Learning in Bayesian Networks

The framework we have described also serves to highlight a number of important links to the liter-
ature on structure learning of directed acyclic graphical (DAG) models (Korb, 2011). The problem
of DAG learning from observed data is known to be NP-hard (Chickeringet al., 2004), and as
such there exist two main families of approximate algorithms.Metric or Score-and-Searchlearn-
ers construct a graph by searching the space of DAGs directly, assigning a score to each based on
properties of the graph in relation to the observed data; probably the most well-known score is the
BIC measure (Korb, 2011). However, the space of DAGs is superexponential in the number of vari-
ables, and hence an exhaustive search rapidly becomes computationally infeasible. Grossman and
Domingos (2004) proposed a greedy hill-climbing search over structures, using conditional likeli-
hood as a scoring criterion. Their work found significant advantage from using this ‘discriminative’
learning objective, as opposed to the traditional ‘generative’ joint likelihood. The potential of this
discriminative model perspective will be expanded upon in Section 9.3.

Constraintlearners approach the problem from a constructivist point of view, adding and remov-
ing arcs from a single DAG according to conditional independence tests given the data. When the
candidate DAG passes all conditional independence statements observedin the data, it is considered
to be a good model. In the current paper, for a feature to be eligible for inclusion, we required that
I(Xk;Y|S)> 0. This is equivalent to a conditional independence testXk ⊥⊥/ Y | S. One well-known
problem with constraint learners is that if a test gives an incorrect result, the error can ‘cascade’,
causing the algorithm to draw further incorrect conclusions on the network structure. This problem
is also true of the popular greedy-search heuristics that we have described in this work.

In Section 3.2, we showed that Markov Blanket algorithms (Tsamardinos etal., 2003) are an
example of the framework we propose. Specifically, the solution to Equation (7) is a (possibly non-
unique) Markov Blanket, and the solution to Equation (8) is exactly the Markov boundary, that is, a
minimal, unique blanket. It is interesting to note that these algorithms, which are a restricted class
of structure learners, assumefaithfulnessof the data distribution. We can see straightforwardly that
all criteria we have considered, when combined with a greedy forward selection, also make this
assumption.

9. Conclusion

This work has presented a unifying framework for information theoretic feature selection, bringing
almost two decades of research on heuristic scoring criteria under a single theoretical interpretation.
This is achieved via a novel interpretation of information theoretic feature selection asan optimiza-
tion of the conditional likelihood—this is in contrast to the current view of mutual information, as a
heuristic measure of feature relevancy.

9.1 Summary of Contributions

In Section 3 we showed how to decompose the conditional likelihood into three terms, each with
their own interpretation in relation to the feature selection problem. One of theseemerges as a
conditional mutual information. This observation allows us to answer the following question:

What are the implicit statistical assumptions of mutual information criteria?The investigations
have revealed that the various criteria published over the past two decades are allapproximate iter-
ative maximisers of the conditional likelihood.The approximations are due to implicit assumptions
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on the data distribution: some are more restrictive than others, and are detailed in Section 4. The
approximations, while heuristic, are necessary due to the need to estimate highdimensional proba-
bility distributions. The popular Markov Blanket learning algorithm IAMB is included in this class
of procedures, hence can also bee seen as an iterative maximiser of the conditional likelihood.

The main differences between criteria are whether they include aclass-conditionalterm, and
whether they provide a mechanism tobalancethe relative size of the redundancy terms against the
relevancy term. To ascertain how these differences impact the criteria in practice, we conducted an
empirical study of 9 different heuristic mutual information criteria across 22data sets. We analyzed
how the criteria behave in large/small sample situations, how the stability of returned feature sets
varies between criteria, and how similar criteria are in the feature sets they return. In particular, the
following questions were investigated:

How do the theoretical properties translate to classifier accuracy?Summarising the perfor-
mance of the criteria under the above conditions, including the class-conditional term isnotalways
necessary. Various criteria, for example MRMR, are successful without this term. However, with-
out this term criteria are blind to certain classes of problems, for example, theMADELON data set,
and will perform poorly in these cases. Balancing the relevancy and redundancy terms is however
extremelyimportant—criteria like MIFS, or CIFE, that allow redundancy to swamp relevancy, are
ranked lowest for accuracy in almost all experiments. In addition, this imbalance tends to cause
large instability in the returned feature sets—being highly sensitive to the supplied data.

How stable are the criteria to small changes in the data?Several criteria return wildly different
feature sets with just small changes in the data, while others return similar sets each time, hence
are ‘stable’ procedures. The most stable was the univariate mutual information, followed closely by
JMI (Yang and Moody, 1999; Meyer et al., 2008); while among the least stable are MIFS (Battiti,
1994) and ICAP (Jakulin, 2005). As visualised by multi-dimensional scalingin Figure 5, several
criteria appear to return quite similar sets, while there are some outliers.

How do criteria behave in limited and extreme small-sample situations?In extreme small-
sample situations, it appears the above rules (regarding the conditional term and the balancing of
relevancy-redundancy) can be broken—the poor estimation of distributions means the theoretical
properties do not translate immediately to performance.

9.2 Advice for the Practitioner

From our investigations we have identified three desirable characteristics of an information based
selection criterion. The first is whether it includes reference to a conditional redundancy term—
criteria that do not incorporate it are effectively blind to an entire class ofproblems, those with strong
class-conditional dependencies. The second is whether it keeps the relative size of the redundancy
term from swamping the relevancy term. We find this to beessential—without this control, the
relevancy of thekth feature can easily be ignored in the selection process due to thek−1 redundancy
terms. The third is simply whether the criterion is a low-dimensional approximation,hence making
it usable with small sample sizes. On GISETTE with 6000 examples, we were unable to select more
than 13 features with any kind of reliability. Therefore, low dimensional approximations, the focus
of this article, are essential.

A summary of the criteria is shown in Table 8. Overall we find only 3 criteria thatsatisfy these
properties: CMIM, JMI and DISR. We recommend the JMI criterion, as from empirical investi-
gations it has the best trade-off (in the Pareto-optimal sense) of accuracy and stability. DISR is
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a normalised variant of JMI—in practice we found little need for this normalisation and the extra
computation involved. If higher stability is required—the MIM criterion, as expected, displayed the
highest stability with respect to variations in the data—therefore in extreme data-poor situations we
would recommend this as a first step. If speed is required, the CMIM criterion admits an fast exact
implementation giving orders of magnitude speed-up over a straightforwardimplementation—refer
to Fleuret (2004) for details.

To aid replicability of this work, implementations of all criteria we have discussedare provided
at: http://www.cs.man.ac.uk/∼gbrown/fstoolbox/

MIM mRMR MIFS CMIM JMI DISR ICAP CIFE CMI

Cond Redund term? ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Balances rel/red? ✔ ✔ ✗ ✔ ✔ ✔ ✗ ✗ ✔

Estimable? ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗

Table 8: Summary of criteria. They have been arranged left to right in order of ascending estimation
difficulty. Cond Redund term: does it include the conditional redundancy term?Balances
rel/red: does it balance the relevance and redundancy terms?Estimable: does it use a low
dimensional approximation, making it usable with small samples?

9.3 Future Work

While advice on the suitability of existing criteria is of course useful, perhapsa more interest-
ing result of this work is the perspective it brings to the feature selection problem. We were able
to explicitly state an objective function, and derive an appropriate information-based criterion to
maximise it. This begs the question, what selection criteria would result from different objective
functions? Dmochowski et al. (2010) study a weighted conditional likelihood, and its suitabil-
ity for cost-sensitive problems—it is possible (though outside the scope of this paper) to derive
information-based criteria in this context. The reverse question is equally interesting, what objec-
tive functions are implied by other existing criteria, such as the Gini Index? The KL-divergence
(which defines the mutual information) is a special case of a wider family of measures, based on
the f -divergence—could we obtain similar efficient criteria that pursue these measures, and what
overall objectives do they imply?

In this work we explored criteria that use pairwise (i.e.,I(Xk;Xj)) approximations to the derived
objective. These approximations are commonly used as they provide a reasonable heuristic while
still being (relatively) simple to estimate. There has been work which suggestsrelaxing this pairwise
approximation, and thus increasing the number of terms (Brown, 2009; Meyer et al., 2008), but there
is little exploration of how much data is required to estimate these multivariate information terms. A
theoretical analysis of the tradeoff between estimation accuracy and additional information provided
by these more complex terms could provide interesting directions for improving the power of filter
feature selection techniques.

A very interesting direction concerns the motivation behind the conditional likelihood as an ob-
jective. It can be noted that the conditional likelihood, though a well-accepted objective function in
its own right, can be derived from a probabilistic discriminative model, as follows. We approximate
the true distributionp with our modelq, with three distinct parameter sets:θ for feature selection,
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τ for classification, andλ modelling the input distributionp(x). Following Minka (2005), in the
construction of a discriminative model, our joint likelihood is

L(D,θ,τ,λ) = p(θ,τ)p(λ)
N

∏
i=1

q(yi |xi ,θ,τ)q(xi|λ).

In this type of model, we wish to maximizeL with respect toθ (our feature selection parameters)
andτ (our model parameters), and are not concerned with the generative parametersλ. Excluding
the generative terms gives

L(D,θ,τ,λ) ∝ p(θ,τ)
N

∏
i=1

q(yi |xi ,θ,τ).

When we have no particular bias or prior knowledge over which subset of features or parameters
are more likely (i.e., a flat priorp(θ,τ)), this reduces to the conditional likelihood:

L(D,θ,τ,λ) ∝
N

∏
i=1

q(yi |xi ,θ,τ),

which was exactly our starting point for the current paper. An obvious extension here is to take
a non-uniform prior over features. An important direction for machine learning is to incorporate
domain knowledge. A non-uniform prior would mean influencing the search procedure to incorpo-
rate our background knowledge of the features. This is applicable for example in gene expression
data, when we may have information about the metabolic pathways in which genes participate, and
therefore which genes are likely to influence certain biological functions.This is outside the scope
of this paper but is the focus of our current research.
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Appendix A.

The following proofs make use of the identity,I(A;B|C)− I(A;B) = I(A;C|B)− I(A;C).

A.1 Proof of Equation (17)

TheJoint Mutual Informationcriterion (Yang and Moody, 1999) can be written,

Jjmi(Xk)= ∑
Xj∈S

I(XkXj ;Y),

= ∑
Xj∈S

[
I(Xj ;Y)+ I(Xk;Y|Xj)

]
.
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The term∑Xj∈SI(Xj ;Y) in the above is constant with respect to theXk argument that we are inter-
ested in, so can be omitted. The criterion therefore reduces to (17) as follows,

Jjmi(Xk) = ∑
Xj∈S

[
I(Xk;Y|Xj)

]

= ∑
Xj∈S

[
I(Xk;Y)− I(Xk;Xj)+ I(Xk;Xj |Y)

]

= |S|× I(Xk;Y)− ∑
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj |Y)

]

∝ I(Xk;Y)−
1
|S| ∑

Xj∈S

[
I(Xk;Xj)− I(Xk;Xj |Y)

]
.

A.2 Proof of Equation (19)

The rearrangement of the Conditional Mutual Information criterion (Fleuret, 2004) follows a very
similar procedure. The original, and its rewriting are,

Jcmim(Xk) = min
Xj∈S

[
I(Xk;Y|Xj)

]

= min
Xj∈S

[
I(Xk;Y)− I(Xk;Xj)+ I(Xk;Xj |Y)

]

= I(Xk;Y)+min
Xj∈S

[
I(Xk;Xj |Y)− I(Xk;Xj)

]

= I(Xk;Y)−max
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj |Y)

]
,

which is exactly Equation (19).
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M. Vidal-Naquet and S. Ullman. Object recognition with informative featuresand linear classifica-
tion. IEEE Conference on Computer Vision and Pattern Recognition, 2003.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for
svms. Advances in Neural Information Processing Systems, pages 668–674, 2001. ISSN 1049-
5258.

H. Yang and J. Moody. Data visualization and feature selection: New algorithms for non-gaussian
data.Advances in Neural Information Processing Systems, 12, 1999.

L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy.Journal of
Machine Learning Research, 5:1205–1224, 2004.

L. Yu, C. Ding, and S. Loscalzo. Stable feature selection via dense feature groups. InProceeding
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 803–811, 2008.

66


